昨天考试由于不会fwt而爆炸,所以今天搞了一下fwt……话说这玩意的普及程度已经很高了.
fwt,快速沃尔什变换,可以用于位运算卷积的优化,是一种线性变换,所以就会有许多好的性质(eg:可以直接模,可以修改运算等). & | ^ 的变换定义与方法是基础,在此基础上的扩展与运用是重要的地方.
HZOI #1572.宇宙序列
  notes:

这就是造成我考试爆炸的考试题,见Contest Record

UOJ #310.【UNR #2】黎明前的巧克力
  notes:

感觉比较灵活的一道题.首先写出裸dp,之后会发现答案就是许多数组连续进行fwt,这个时候经过观察会发现,每个数组变换后每个位置上不是-1就是3这个时候我们可以对于每一位进行单独考虑,去算与这一位&之后有奇数位的数的个数,以及与这一位&之后有偶数位的数的个数,我们可以用fwt计算这个,然后计算每一位的最后答案,最后再ifwt回去.
思想:
  I.感觉在fwt里利用对应位相乘所导致的每一位互相独立是许多fwt题目中解题的关键.
  II.在这个题目中观察性质从而改变问题的思路很巧妙啊.

UOJ #267.【清华集训2016】魔法小程序
  notes:

就是对于|运算fwt的扩展,看懂题意之后其实就是个加工板子的过程.不过,感觉那个数据范围给的好迷啊,为什么int就可以呢……不会证明……

UOJ #300.【CTSC2017】吉夫特
  notes:

题目比较傻逼,首先可以写出n^2裸dp来,然后用Lucas定理可以证明出,一个组合数为奇数的充要条件,然后就可以枚举子集来dp了,是O(3^18).
实际上这题可以做得更加优秀.
首先这题可以进行序列上的分块,做到O(2^27).
然后这道题还可以用二进制分块来动态维护&运算fwt数组,从而做到O(6^9).
思想:用Lucas定理来进行组合数相关的证明(我反正是没想到这玩意)、分块思想(序列分块、二进制分块).
技巧:枚举子集是i=(i-1)&x,枚举父集是i=(i+1)|x.

UOJ #348.【WC2018】州区划分
  notes:

先写出O(3^n)的傻逼dp,然后开始优化.
发现转移是子集卷积的形式,于是考虑进行子集卷积,然后这题就完事了.
子集卷积:
  f(i)=sigma [j|k=i,j&k=0] g(j)*h(k);
  转化为f(c,i)=sigma [j|k=i,|j|+|k|=c] g(j)*h(k)
  这个时候我们原来的子集卷积,就变为了二维卷积(也就是加法卷积套|运算卷积),显然第一维卷积可以直接计算,第二维卷积fwt就可以了,于是子集卷积的复杂度从O(3^n)优化到了O(n^2*2^n).

Notes of fwt的更多相关文章

  1. ASP.NET Core 1.1.0 Release Notes

    ASP.NET Core 1.1.0 Release Notes We are pleased to announce the release of ASP.NET Core 1.1.0! Antif ...

  2. Android Weekly Notes Issue #237

    Android Weekly Issue #237 December 25th, 2016 Android Weekly Issue #237 这是本年的最后一篇issue, 感谢大家. 本期内容包括 ...

  3. Android Weekly Notes Issue #230

    Android Weekly Notes Issue #230 November 6th, 2016 Android Weekly Issue #230. Android Weekly笔记, 本期内容 ...

  4. Android Weekly Notes Issue #229

    Android Weekly Issue #229 October 30th, 2016 Android Weekly Issue #229 Android Weekly笔记, 本期内容包括: 性能库 ...

  5. Android Weekly Notes Issue #227

    Android Weekly Issue #227 October 16th, 2016 Android Weekly Issue #227. 本期内容包括: Google的Mobile Vision ...

  6. Android Weekly Notes Issue #221

    Android Weekly Issue #221 September 4th, 2016 Android Weekly Issue #221 ARTICLES & TUTORIALS And ...

  7. Android Weekly Notes Issue #219

    Android Weekly Issue #219 August 21st, 2016 Android Weekly Issue #219 ARTICLES & TUTORIALS Andro ...

  8. FWT与High dick(划掉改成Dimensional) Fourier Transform

    我们大家都知道xor卷积有个很好的做法:FWT.FWT的变换形式是很好看的 // 说明一下Vector可以向量化运算,也可以当做数组来slice与concat Vector tf(A,2^n){ Ve ...

  9. Codeforces663E Binary Table(FWT)

    题目 Source http://codeforces.com/contest/663/problem/E Description You are given a table consisting o ...

随机推荐

  1. Python接口测试实战1(下)- 接口测试工具的使用

    如有任何学习问题,可以添加作者微信:lockingfree 课程目录 Python接口测试实战1(上)- 接口测试理论 Python接口测试实战1(下)- 接口测试工具的使用 Python接口测试实战 ...

  2. 【ANSIBLE】ansible控制windows插件安装及运行error与解决方法

    一. 问:因pip版本问题无法安装kerberos 答:安装提示需要先安装pip升级包 下载pip9.0.1升级包: https://pypi.python.org/packages/b6/ac/70 ...

  3. XSS 注入检查点

    如果你有个论坛,一般你会很注意用户发帖的注入问题,往往这个地方不会被注入,因为开发特别照顾.原则上XSS都是用户输入的,但是许多边角还是容易忽略.枚举一些检查点. 分页 分页通用组件获取url,修改p ...

  4. [leetcode-914-X of a Kind in a Deck of Cards]

    In a deck of cards, each card has an integer written on it. Return true if and only if you can choos ...

  5. KNY团队与“易校”小程序介绍

    一.团队介绍 “KNY”团队是软件工程专业中的一支充满了斗志,充满了自信的队伍,由三人组成,每个队员都在为我们共同一致的目标而努力:我们三个人的小程序的知识都相对薄弱,但我们不甘落后,一直在努力的学习 ...

  6. Linux发行版本应用场景

    如果你是一个Linux爱好者,想选择一个桌面系统,并且既不想用盗版,又不想花太多钱购买商业系统软件,那么可以选择Ubuntu桌面系统.如果你需要服务器端的Linux系统,想用一个比较稳定的服务器系统, ...

  7. Android源码项目目录结构

    src: 存放java代码 gen: 存放自动生成文件的. R.java 存放res文件夹下对应资源的id project.properties: 指定当前工程采用的开发工具包的版本 libs: 当前 ...

  8. 【IdentityServer4文档】- 使用客户端凭据保护 API

    使用客户端凭据保护 API quickstart 介绍了使用 IdentityServer 保护 API 的最基本场景. 接下来的场景,我们将定义一个 API 和一个想要访问它的客户端. 客户端将在 ...

  9. 线段树-hdu2795 Billboard(贴海报)

    hdu2795 Billboard 题意:h*w的木板,放进一些1*L的物品,求每次放空间能容纳且最上边的位子 思路:每次找到最大值的位子,然后减去L 线段树功能:query:区间求最大值的位子(直接 ...

  10. 缓存-MemoryCache Class

    这是使用MemoryCache缓存的一个例子. private void btnGet_Click(object sender, EventArgs e) { ObjectCache cache = ...