Notes of fwt
昨天考试由于不会fwt而爆炸,所以今天搞了一下fwt……话说这玩意的普及程度已经很高了.
fwt,快速沃尔什变换,可以用于位运算卷积的优化,是一种线性变换,所以就会有许多好的性质(eg:可以直接模,可以修改运算等). & | ^ 的变换定义与方法是基础,在此基础上的扩展与运用是重要的地方.
HZOI #1572.宇宙序列
notes:
这就是造成我考试爆炸的考试题,见Contest Record
UOJ #310.【UNR #2】黎明前的巧克力
notes:
感觉比较灵活的一道题.首先写出裸dp,之后会发现答案就是许多数组连续进行fwt,这个时候经过观察会发现,每个数组变换后每个位置上不是-1就是3这个时候我们可以对于每一位进行单独考虑,去算与这一位&之后有奇数位的数的个数,以及与这一位&之后有偶数位的数的个数,我们可以用fwt计算这个,然后计算每一位的最后答案,最后再ifwt回去.
思想:
I.感觉在fwt里利用对应位相乘所导致的每一位互相独立是许多fwt题目中解题的关键.
II.在这个题目中观察性质从而改变问题的思路很巧妙啊.
UOJ #267.【清华集训2016】魔法小程序
notes:
就是对于|运算fwt的扩展,看懂题意之后其实就是个加工板子的过程.不过,感觉那个数据范围给的好迷啊,为什么int就可以呢……不会证明……
UOJ #300.【CTSC2017】吉夫特
notes:
题目比较傻逼,首先可以写出n^2裸dp来,然后用Lucas定理可以证明出,一个组合数为奇数的充要条件,然后就可以枚举子集来dp了,是O(3^18).
实际上这题可以做得更加优秀.
首先这题可以进行序列上的分块,做到O(2^27).
然后这道题还可以用二进制分块来动态维护&运算fwt数组,从而做到O(6^9).
思想:用Lucas定理来进行组合数相关的证明(我反正是没想到这玩意)、分块思想(序列分块、二进制分块).
技巧:枚举子集是i=(i-1)&x,枚举父集是i=(i+1)|x.
UOJ #348.【WC2018】州区划分
notes:
先写出O(3^n)的傻逼dp,然后开始优化.
发现转移是子集卷积的形式,于是考虑进行子集卷积,然后这题就完事了.
子集卷积:
f(i)=sigma [j|k=i,j&k=0] g(j)*h(k);
转化为f(c,i)=sigma [j|k=i,|j|+|k|=c] g(j)*h(k)
这个时候我们原来的子集卷积,就变为了二维卷积(也就是加法卷积套|运算卷积),显然第一维卷积可以直接计算,第二维卷积fwt就可以了,于是子集卷积的复杂度从O(3^n)优化到了O(n^2*2^n).
Notes of fwt的更多相关文章
- ASP.NET Core 1.1.0 Release Notes
ASP.NET Core 1.1.0 Release Notes We are pleased to announce the release of ASP.NET Core 1.1.0! Antif ...
- Android Weekly Notes Issue #237
Android Weekly Issue #237 December 25th, 2016 Android Weekly Issue #237 这是本年的最后一篇issue, 感谢大家. 本期内容包括 ...
- Android Weekly Notes Issue #230
Android Weekly Notes Issue #230 November 6th, 2016 Android Weekly Issue #230. Android Weekly笔记, 本期内容 ...
- Android Weekly Notes Issue #229
Android Weekly Issue #229 October 30th, 2016 Android Weekly Issue #229 Android Weekly笔记, 本期内容包括: 性能库 ...
- Android Weekly Notes Issue #227
Android Weekly Issue #227 October 16th, 2016 Android Weekly Issue #227. 本期内容包括: Google的Mobile Vision ...
- Android Weekly Notes Issue #221
Android Weekly Issue #221 September 4th, 2016 Android Weekly Issue #221 ARTICLES & TUTORIALS And ...
- Android Weekly Notes Issue #219
Android Weekly Issue #219 August 21st, 2016 Android Weekly Issue #219 ARTICLES & TUTORIALS Andro ...
- FWT与High dick(划掉改成Dimensional) Fourier Transform
我们大家都知道xor卷积有个很好的做法:FWT.FWT的变换形式是很好看的 // 说明一下Vector可以向量化运算,也可以当做数组来slice与concat Vector tf(A,2^n){ Ve ...
- Codeforces663E Binary Table(FWT)
题目 Source http://codeforces.com/contest/663/problem/E Description You are given a table consisting o ...
随机推荐
- vue的ui库使用Element UI,纯html页面,不使用webpack那玩意
使用手册访问:https://cloud.tencent.com/developer/doc/1270 第一步:在head添加样式 <link rel="stylesheet" ...
- mac安装pkg 一直“正在验证” 卡着
今天换了新mac, 但是之前wireshark(抓包工具) 不能用了 ,要安装Xquartz. 下载之后一直卡着, 网上找了半天没有解决方法. 最后我重启一下就好了... 重启一下. 2. 15款ma ...
- 238. [LeetCode] Product of Array Except Self
Given an array nums of n integers where n > 1, return an array output such that output[i] is equ ...
- tensorflow中使用mnist数据集训练全连接神经网络-学习笔记
tensorflow中使用mnist数据集训练全连接神经网络 ——学习曹健老师“人工智能实践:tensorflow笔记”的学习笔记, 感谢曹老师 前期准备:mnist数据集下载,并存入data目录: ...
- 【转】SWFUpload使用指南
原文出自:http://www.runoob.com/w3cnote/swfupload-guide.html SWFUpload是一个flash和js相结合而成的文件上传插件,其功能非常强大.以前在 ...
- mysql常用语句入门整理
这篇属于小白入门级别,如果你已经高手可以直接跳过 1.运行数据库mysqld.exe,客户端直接mysql -uroot(root是默认用户名) -p 2 showdatabases,showtabl ...
- php序列化问题
序列化是将变量转换为可保存或传输的字符串的过程:反序列化就是在适当的时候把这个字符串再转化成原来的变量使用.这两个过程结合起来,可以轻松地存储和传输数据,使程序更具维护性. 1. serialize和 ...
- 汉诺塔python实现
下载汉诺塔ppt def move(n,A,B,C): if n == 1: print(A,'->',C) else: move(n-1,A,C,B) print(A,'->',C) m ...
- Java微笔记(8)
Java 中的包装类 Java 为每个基本数据类型都提供了一个包装类,这样就可以像操作对象那样来操作基本数据类型 基本类型和包装类之间的对应关系: 包装类主要提供了两大类方法: 将本类型和其他基本类型 ...
- 解析DXF图形文件格式
一.DXF文件格式分析 DXF文件由标题段.表段.块段.实体段和文件结束段5部分组成,其内容如下. ☆标题段(HEADER)标题段记录AutoCAD系统的所有标题变量的当前值或当前状态.标题变量记录了 ...