Notes of fwt
昨天考试由于不会fwt而爆炸,所以今天搞了一下fwt……话说这玩意的普及程度已经很高了.
fwt,快速沃尔什变换,可以用于位运算卷积的优化,是一种线性变换,所以就会有许多好的性质(eg:可以直接模,可以修改运算等). & | ^ 的变换定义与方法是基础,在此基础上的扩展与运用是重要的地方.
HZOI #1572.宇宙序列
notes:
这就是造成我考试爆炸的考试题,见Contest Record
UOJ #310.【UNR #2】黎明前的巧克力
notes:
感觉比较灵活的一道题.首先写出裸dp,之后会发现答案就是许多数组连续进行fwt,这个时候经过观察会发现,每个数组变换后每个位置上不是-1就是3这个时候我们可以对于每一位进行单独考虑,去算与这一位&之后有奇数位的数的个数,以及与这一位&之后有偶数位的数的个数,我们可以用fwt计算这个,然后计算每一位的最后答案,最后再ifwt回去.
思想:
I.感觉在fwt里利用对应位相乘所导致的每一位互相独立是许多fwt题目中解题的关键.
II.在这个题目中观察性质从而改变问题的思路很巧妙啊.
UOJ #267.【清华集训2016】魔法小程序
notes:
就是对于|运算fwt的扩展,看懂题意之后其实就是个加工板子的过程.不过,感觉那个数据范围给的好迷啊,为什么int就可以呢……不会证明……
UOJ #300.【CTSC2017】吉夫特
notes:
题目比较傻逼,首先可以写出n^2裸dp来,然后用Lucas定理可以证明出,一个组合数为奇数的充要条件,然后就可以枚举子集来dp了,是O(3^18).
实际上这题可以做得更加优秀.
首先这题可以进行序列上的分块,做到O(2^27).
然后这道题还可以用二进制分块来动态维护&运算fwt数组,从而做到O(6^9).
思想:用Lucas定理来进行组合数相关的证明(我反正是没想到这玩意)、分块思想(序列分块、二进制分块).
技巧:枚举子集是i=(i-1)&x,枚举父集是i=(i+1)|x.
UOJ #348.【WC2018】州区划分
notes:
先写出O(3^n)的傻逼dp,然后开始优化.
发现转移是子集卷积的形式,于是考虑进行子集卷积,然后这题就完事了.
子集卷积:
f(i)=sigma [j|k=i,j&k=0] g(j)*h(k);
转化为f(c,i)=sigma [j|k=i,|j|+|k|=c] g(j)*h(k)
这个时候我们原来的子集卷积,就变为了二维卷积(也就是加法卷积套|运算卷积),显然第一维卷积可以直接计算,第二维卷积fwt就可以了,于是子集卷积的复杂度从O(3^n)优化到了O(n^2*2^n).
Notes of fwt的更多相关文章
- ASP.NET Core 1.1.0 Release Notes
ASP.NET Core 1.1.0 Release Notes We are pleased to announce the release of ASP.NET Core 1.1.0! Antif ...
- Android Weekly Notes Issue #237
Android Weekly Issue #237 December 25th, 2016 Android Weekly Issue #237 这是本年的最后一篇issue, 感谢大家. 本期内容包括 ...
- Android Weekly Notes Issue #230
Android Weekly Notes Issue #230 November 6th, 2016 Android Weekly Issue #230. Android Weekly笔记, 本期内容 ...
- Android Weekly Notes Issue #229
Android Weekly Issue #229 October 30th, 2016 Android Weekly Issue #229 Android Weekly笔记, 本期内容包括: 性能库 ...
- Android Weekly Notes Issue #227
Android Weekly Issue #227 October 16th, 2016 Android Weekly Issue #227. 本期内容包括: Google的Mobile Vision ...
- Android Weekly Notes Issue #221
Android Weekly Issue #221 September 4th, 2016 Android Weekly Issue #221 ARTICLES & TUTORIALS And ...
- Android Weekly Notes Issue #219
Android Weekly Issue #219 August 21st, 2016 Android Weekly Issue #219 ARTICLES & TUTORIALS Andro ...
- FWT与High dick(划掉改成Dimensional) Fourier Transform
我们大家都知道xor卷积有个很好的做法:FWT.FWT的变换形式是很好看的 // 说明一下Vector可以向量化运算,也可以当做数组来slice与concat Vector tf(A,2^n){ Ve ...
- Codeforces663E Binary Table(FWT)
题目 Source http://codeforces.com/contest/663/problem/E Description You are given a table consisting o ...
随机推荐
- Python接口测试实战1(下)- 接口测试工具的使用
如有任何学习问题,可以添加作者微信:lockingfree 课程目录 Python接口测试实战1(上)- 接口测试理论 Python接口测试实战1(下)- 接口测试工具的使用 Python接口测试实战 ...
- 【ANSIBLE】ansible控制windows插件安装及运行error与解决方法
一. 问:因pip版本问题无法安装kerberos 答:安装提示需要先安装pip升级包 下载pip9.0.1升级包: https://pypi.python.org/packages/b6/ac/70 ...
- XSS 注入检查点
如果你有个论坛,一般你会很注意用户发帖的注入问题,往往这个地方不会被注入,因为开发特别照顾.原则上XSS都是用户输入的,但是许多边角还是容易忽略.枚举一些检查点. 分页 分页通用组件获取url,修改p ...
- [leetcode-914-X of a Kind in a Deck of Cards]
In a deck of cards, each card has an integer written on it. Return true if and only if you can choos ...
- KNY团队与“易校”小程序介绍
一.团队介绍 “KNY”团队是软件工程专业中的一支充满了斗志,充满了自信的队伍,由三人组成,每个队员都在为我们共同一致的目标而努力:我们三个人的小程序的知识都相对薄弱,但我们不甘落后,一直在努力的学习 ...
- Linux发行版本应用场景
如果你是一个Linux爱好者,想选择一个桌面系统,并且既不想用盗版,又不想花太多钱购买商业系统软件,那么可以选择Ubuntu桌面系统.如果你需要服务器端的Linux系统,想用一个比较稳定的服务器系统, ...
- Android源码项目目录结构
src: 存放java代码 gen: 存放自动生成文件的. R.java 存放res文件夹下对应资源的id project.properties: 指定当前工程采用的开发工具包的版本 libs: 当前 ...
- 【IdentityServer4文档】- 使用客户端凭据保护 API
使用客户端凭据保护 API quickstart 介绍了使用 IdentityServer 保护 API 的最基本场景. 接下来的场景,我们将定义一个 API 和一个想要访问它的客户端. 客户端将在 ...
- 线段树-hdu2795 Billboard(贴海报)
hdu2795 Billboard 题意:h*w的木板,放进一些1*L的物品,求每次放空间能容纳且最上边的位子 思路:每次找到最大值的位子,然后减去L 线段树功能:query:区间求最大值的位子(直接 ...
- 缓存-MemoryCache Class
这是使用MemoryCache缓存的一个例子. private void btnGet_Click(object sender, EventArgs e) { ObjectCache cache = ...