Notes of fwt
昨天考试由于不会fwt而爆炸,所以今天搞了一下fwt……话说这玩意的普及程度已经很高了.
fwt,快速沃尔什变换,可以用于位运算卷积的优化,是一种线性变换,所以就会有许多好的性质(eg:可以直接模,可以修改运算等). & | ^ 的变换定义与方法是基础,在此基础上的扩展与运用是重要的地方.
HZOI #1572.宇宙序列
notes:
这就是造成我考试爆炸的考试题,见Contest Record
UOJ #310.【UNR #2】黎明前的巧克力
notes:
感觉比较灵活的一道题.首先写出裸dp,之后会发现答案就是许多数组连续进行fwt,这个时候经过观察会发现,每个数组变换后每个位置上不是-1就是3这个时候我们可以对于每一位进行单独考虑,去算与这一位&之后有奇数位的数的个数,以及与这一位&之后有偶数位的数的个数,我们可以用fwt计算这个,然后计算每一位的最后答案,最后再ifwt回去.
思想:
I.感觉在fwt里利用对应位相乘所导致的每一位互相独立是许多fwt题目中解题的关键.
II.在这个题目中观察性质从而改变问题的思路很巧妙啊.
UOJ #267.【清华集训2016】魔法小程序
notes:
就是对于|运算fwt的扩展,看懂题意之后其实就是个加工板子的过程.不过,感觉那个数据范围给的好迷啊,为什么int就可以呢……不会证明……
UOJ #300.【CTSC2017】吉夫特
notes:
题目比较傻逼,首先可以写出n^2裸dp来,然后用Lucas定理可以证明出,一个组合数为奇数的充要条件,然后就可以枚举子集来dp了,是O(3^18).
实际上这题可以做得更加优秀.
首先这题可以进行序列上的分块,做到O(2^27).
然后这道题还可以用二进制分块来动态维护&运算fwt数组,从而做到O(6^9).
思想:用Lucas定理来进行组合数相关的证明(我反正是没想到这玩意)、分块思想(序列分块、二进制分块).
技巧:枚举子集是i=(i-1)&x,枚举父集是i=(i+1)|x.
UOJ #348.【WC2018】州区划分
notes:
先写出O(3^n)的傻逼dp,然后开始优化.
发现转移是子集卷积的形式,于是考虑进行子集卷积,然后这题就完事了.
子集卷积:
f(i)=sigma [j|k=i,j&k=0] g(j)*h(k);
转化为f(c,i)=sigma [j|k=i,|j|+|k|=c] g(j)*h(k)
这个时候我们原来的子集卷积,就变为了二维卷积(也就是加法卷积套|运算卷积),显然第一维卷积可以直接计算,第二维卷积fwt就可以了,于是子集卷积的复杂度从O(3^n)优化到了O(n^2*2^n).
Notes of fwt的更多相关文章
- ASP.NET Core 1.1.0 Release Notes
ASP.NET Core 1.1.0 Release Notes We are pleased to announce the release of ASP.NET Core 1.1.0! Antif ...
- Android Weekly Notes Issue #237
Android Weekly Issue #237 December 25th, 2016 Android Weekly Issue #237 这是本年的最后一篇issue, 感谢大家. 本期内容包括 ...
- Android Weekly Notes Issue #230
Android Weekly Notes Issue #230 November 6th, 2016 Android Weekly Issue #230. Android Weekly笔记, 本期内容 ...
- Android Weekly Notes Issue #229
Android Weekly Issue #229 October 30th, 2016 Android Weekly Issue #229 Android Weekly笔记, 本期内容包括: 性能库 ...
- Android Weekly Notes Issue #227
Android Weekly Issue #227 October 16th, 2016 Android Weekly Issue #227. 本期内容包括: Google的Mobile Vision ...
- Android Weekly Notes Issue #221
Android Weekly Issue #221 September 4th, 2016 Android Weekly Issue #221 ARTICLES & TUTORIALS And ...
- Android Weekly Notes Issue #219
Android Weekly Issue #219 August 21st, 2016 Android Weekly Issue #219 ARTICLES & TUTORIALS Andro ...
- FWT与High dick(划掉改成Dimensional) Fourier Transform
我们大家都知道xor卷积有个很好的做法:FWT.FWT的变换形式是很好看的 // 说明一下Vector可以向量化运算,也可以当做数组来slice与concat Vector tf(A,2^n){ Ve ...
- Codeforces663E Binary Table(FWT)
题目 Source http://codeforces.com/contest/663/problem/E Description You are given a table consisting o ...
随机推荐
- RabbitMQ入门:在Spring Boot 应用中整合RabbitMQ
在上一篇随笔中我们认识并安装了RabbitMQ,接下来我们来看下怎么在Spring Boot 应用中整合RabbitMQ. 先给出最终目录结构: 搭建步骤如下: 新建maven工程amqp 修改pom ...
- 智慧树mooc自动刷课代码
最近学习javaScript和JQuery,恰好还有一门mooc没有看.结合学习的知识和其他人的代码:撸了一个自动播放课程的代码,同时自动跳过单章的测试题. 用电脑挂着不动就完事了. 如下: var ...
- leetcode个人题解——#33 Search in Rotated Sorted Array
思路:每次取中间元素,一定有一半有序,另一半部分有序,有序的部分进行二分查找,部分有序的部分递归继续处理. class Solution { public: ; int middleSearch(in ...
- Qt中容器类应该如何存储对象
Qt提供了丰富的容器类型,如:QList.QVector.QMap等等.详细的使用方法可以参考官方文档,网上也有很多示例文章,不过大部分文章的举例都是使用基础类型:如int.QString等.如果我们 ...
- Hibernate入门篇<1>hibernate.cfg.xml学习小结
Hibernate配置文件主要用于配置数据库连接和Hibernate运行时所需的各种属性,这个配置文件应该位于应用程序或Web程序的类文件夹 classes中.Hibernate配置文件支持两种形式, ...
- Jquery获取属性值
jq获取某个标签内的属性值:$("#TeamPerformanceYearUl li:eq(0)").attr('data') jq获取li或者td第一个属性(索引值从零开始)$( ...
- 初学Objective - C语法之代码块(block)
一.block声明 1.无参数,无返回值: void (^sayHi)(); 2.有参数,有返回值: NSInteger (^operateOfValue)(NSInteger num); block ...
- 【转】Linux C 网络编程——TCP套接口编程
地址:http://blog.csdn.net/matrix_laboratory/article/details/13669211 2. socket() <span style=" ...
- WordPress使用淘宝IP地址库的API显示评论者的位置信息(二)
1 淘宝IP地址库的接口说明 在上一篇文章<WordPress使用淘宝IP地址库的API显示评论者的位置信息(一)>中,vfhky使用了新浪工具提供的这个IP接口显示博客评论者的位置信息. ...
- C#使用 SharpSSH
准备试一把监控Linux机器 . 附件如下 :http://files.cnblogs.com/files/lclblog/Tamir.SharpSsh.zip