LevelDB Compaction操作

  对于LevelDb来说,写入记录操作很简单,删除记录仅仅写入一个删除标记就算完事,但是读取记录比较复杂,需要在内存以及各个层级文件中依照新鲜程度依次查找,代价很高。为了加快读取速度,levelDb采取了compaction的方式来对已有的记录进行整理压缩,通过这种方式,来删除掉一些不再有效的KV数据,减小数据规模,减少文件数量等。

  levelDb的compaction机制和过程与Bigtable所讲述的是基本一致的,Bigtable中讲到三种类型的compaction: minor ,major和full。所谓minor Compaction,就是把memtable中的数据导出到SSTable文件中;major compaction就是合并不同层级的SSTable文件,而full compaction就是将所有SSTable进行合并。

  LevelDb包含其中两种,minor和major。

  先来看看minor Compaction的过程。Minor compaction 的目的是当内存中的memtable大小到了一定值时,将内容保存到磁盘文件中,图8.1是其机理示意图。

  

  从8.1可以看出,当memtable数量到了一定程度会转换为immutable memtable,此时不能往其中写入记录,只能从中读取KV内容。之前介绍过,immutable memtable其实是一个多层级队列SkipList,其中的记录是根据key有序排列的。所以这个minor compaction实现起来也很简单,就是按照immutable memtable中记录由小到大遍历,并依次写入一个level 0 的新建SSTable文件中,写完后建立文件的index数据,这样就完成了一次minor compaction。从图中也可以看出,对于被删除的记录,在minor compaction过程中并不真正删除这个记录,原因也很简单,这里只知道要删掉key记录,但是这个KV数据在哪里?那需要复杂的查找,所以在minor compaction的时候并不做删除,只是将这个key作为一个记录写入文件中,至于真正的删除操作,在以后更高层级的compaction中会去做。

  当某个level下的SSTable文件数目超过一定设置值后,levelDb会从这个level的SSTable中选择一个文件(level>0),将其和高一层级的level+1的SSTable文件合并,这就是major compaction。

  我们知道在大于0的层级中,每个SSTable文件内的Key都是由小到大有序存储的,而且不同文件之间的key范围(文件内最小key和最大key之间)不会有任何重叠。Level 0的SSTable文件有些特殊,尽管每个文件也是根据Key由小到大排列,但是因为level 0的文件是通过minor compaction直接生成的,所以任意两个level 0下的两个sstable文件可能再key范围上有重叠。所以在做major compaction的时候,对于大于level 0的层级,选择其中一个文件就行,但是对于level 0来说,指定某个文件后,本level中很可能有其他SSTable文件的key范围和这个文件有重叠,这种情况下,要找出所有有重叠的文件和level 1的文件进行合并,即level 0在进行文件选择的时候,可能会有多个文件参与major compaction。

  levelDb在选定某个level进行compaction后,还要选择是具体哪个文件要进行compaction,levelDb在这里有个小技巧, 就是说轮流来,比如这次是文件A进行compaction,那么下次就是在key range上紧挨着文件A的文件B进行compaction,这样每个文件都会有机会轮流和高层的level 文件进行合并。

  如果选好了level L的文件A和level L+1层的文件进行合并,那么问题又来了,应该选择level L+1哪些文件进行合并?levelDb选择L+1层中和文件A在key range上有重叠的所有文件来和文件A进行合并。

  也就是说,选定了level L的文件A,之后在level L+1中找到了所有需要合并的文件B,C,D…..等等。剩下的问题就是具体是如何进行major 合并的?就是说给定了一系列文件,每个文件内部是key有序的,如何对这些文件进行合并,使得新生成的文件仍然Key有序,同时抛掉哪些不再有价值的KV 数据。

  图8.2说明了这一过程。

  

  Major compaction的过程如下:对多个文件采用多路归并排序的方式,依次找出其中最小的Key记录,也就是对多个文件中的所有记录重新进行排序。之后采取一定的标准判断这个Key是否还需要保存,如果判断没有保存价值,那么直接抛掉,如果觉得还需要继续保存,那么就将其写入level L+1层中新生成的一个SSTable文件中。就这样对KV数据一一处理,形成了一系列新的L+1层数据文件,之前的L层文件和L+1层参与compaction 的文件数据此时已经没有意义了,所以全部删除。这样就完成了L层和L+1层文件记录的合并过程。

  那么在major compaction过程中,判断一个KV记录是否抛弃的标准是什么呢?其中一个标准是:对于某个key来说,如果在小于L层中存在这个Key,那么这个KV在major compaction过程中可以抛掉。因为我们前面分析过,对于层级低于L的文件中如果存在同一Key的记录,那么说明对于Key来说,有更新鲜的Value存在,那么过去的Value就等于没有意义了,所以可以删除。

参考:http://www.cnblogs.com/haippy/archive/2011/12/04/2276064.html

  

LevelDB Compaction操作的更多相关文章

  1. LevelDB的源码阅读(四) Compaction操作

    leveldb的数据存储采用LSM的思想,将随机写入变为顺序写入,记录写入操作日志,一旦日志被以追加写的形式写入硬盘,就返回写入成功,由后台线程将写入日志作用于原有的磁盘文件生成新的磁盘数据.Leve ...

  2. Rocksdb Compaction原理

    概述 compaction主要包括两类:将内存中imutable 转储到磁盘上sst的过程称之为flush或者minor compaction:磁盘上的sst文件从低层向高层转储的过程称之为compa ...

  3. LevelDB库简介

    LevelDB库简介 一.LevelDB入门 LevelDB是Google开源的持久化KV单机数据库,具有很高的随机写,顺序读/写性能,但是随机读的性能很一般,也就是说,LevelDB很适合应用在查询 ...

  4. [转载] leveldb日知录

    原文: http://www.cnblogs.com/haippy/archive/2011/12/04/2276064.html 对leveldb非常好的一篇学习总结文章 郑重声明:本篇博客是自己学 ...

  5. LevelDb简单介绍和原理——本质:类似nedb,插入数据文件不断增长(快照),再通过删除老数据做更新

    转自:http://www.cnblogs.com/haippy/archive/2011/12/04/2276064.html 有时间再好好看下整个文章! 说起LevelDb也许您不清楚,但是如果作 ...

  6. Leveldb 实现原理

    原文地址:http://www.cnblogs.com/haippy/archive/2011/12/04/2276064.html LevelDb日知录之一:LevelDb 101 说起LevelD ...

  7. LevelDB源码之五Current文件\Manifest文件\版本信息

    版本信息有什么用?先来简要说明三个类的具体用途: Version:代表了某一时刻的数据库版本信息,版本信息的主要内容是当前各个Level的SSTable数据文件列表. VersionSet:维护了一份 ...

  8. LevelDB系列之整体架构

    LevelDb本质上是一套存储系统以及在这套存储系统上提供的一些操作接口.为了便于理解整个系统及其处理流程,我们可以从两个不同的角度来看待LevleDb:静态角度和动态角度.从静态角度,可以假想整个系 ...

  9. LevelDb原理剖析

    在说LevelDb之前,先认识两位大牛,Jeff Dean和Sanjay Ghemawat,这两位是Google公司重量级的工程师,为数甚少的Google Fellow之二. Jeff Dean其人: ...

随机推荐

  1. RALL资源获取初始化,删除器

    body, table{font-family: 微软雅黑; font-size: 10pt} table{border-collapse: collapse; border: solid gray; ...

  2. Outpost Security Suite Pro 8.1 – 免费4个月

    OSS( 简称 )一款来自俄罗斯Agnitum公司的互联网安全产品. Outpost以网络防火墙知名,AVG和avast!等知名安全企业都有使用Outpost的防火墙技术. Outpost Secur ...

  3. VScode+Flutter 开发继续踩坑

    运行慢解决方法1:修改build.gradle,注释掉jcenter(),google().使用阿里的镜像.原因是jcenter google库无法访问到导致的问题.虽然我有万能的爬墙工具,开启全局代 ...

  4. tensorflow中tensor的静态维度和动态维度

    tf中使用张量(tensor)这种数据结构来表示所有的数据,可以把张量看成是一个具有n个维度的数组或列表,张量会在各个节点之间流动,参与计算. 张量具有静态维度和动态维度. 在图构建过程中定义的张量拥 ...

  5. 20155234 2016-2017-2 《Java程序设计》第8周学习总结

    20155234 2016-2017-2 <Java程序设计>第8周学习总结 教材学习内容总结 java.util.loggging包提供了日志功能相关类与接口. 使用日志的起点是Logg ...

  6. CH3301 同余方程

    题意 3301 同余方程 0x30「数学知识」例题 描述 求关于 x的同余方程  ax ≡ 1(mod b) 的最小正整数解. 输入格式 输入只有一行,包含两个正整数a,b,用一个空格隔开. 输出格式 ...

  7. mysql update 没有where 不能更新的安全保护设置

    http://www.cnblogs.com/wjoyxt/p/5620827.html    没有where 不能更新的安全保护设置 http://dev.yesky.com/429/3543292 ...

  8. bzoj1013球形空间

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1013 根据距离式子,两个点的话,两边平方再消掉x^2之后有: a1^2 - 2*a1*x1 ...

  9. 显示列表控件(引用SourceGrid)

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Drawing; u ...

  10. java对象模型

    java对象模型其实就是JVM中对象的内存布局.一个对象本身内在结构的描述信息以字节码的方式存储在方法区中(参见java内存区域),说白了就是class文件.那么如何获取到对象的class信息呢?虚拟 ...