Food Delivery


Time Limit: 2 Seconds      Memory Limit: 65536 KB


When we are focusing on solving problems, we usually prefer to stay in front of computers rather than go out for lunch. At this time, we may call for food delivery.

Suppose there are N people living in a straight street that is just lies on an X-coordinate axis. The ith person's coordinate is Xi meters.
And in the street there is a take-out restaurant which has coordinates X meters. One day at lunchtime, each person takes an order from the restaurant at the same time. As a worker in the restaurant, you need to start from the restaurant, send food
to the N people, and then come back to the restaurant. Your speed is V-1 meters per minute.

You know that the N people have different personal characters; therefore they have different feeling on the time their food arrives. Their feelings are measured by Displeasure
Index
. At the beginning, the Displeasure Index for each person is 0. When waiting for the food, the ithperson will gain Bi Displeasure Index per minute.

If one's Displeasure Index goes too high, he will not buy your food any more. So you need to keep the sum of all people's Displeasure Indexas
low as possible in order to maximize your income. Your task is to find the minimal sum of Displeasure Index.

Input

The input contains multiple test cases, separated with a blank line. Each case is started with three integers N ( 1 <= N <= 1000 ), V ( V > 0),X ( X >=
0 ), then N lines followed. Each line contains two integers Xi ( Xi >= 0 ), Bi ( Bi >= 0), which are described above.

You can safely assume that all numbers in the input and output will be less than 231 - 1.

Please process to the end-of-file.

Output

For each test case please output a single number, which is the minimal sum of Displeasure Index. One test case per line.

Sample Input

5 1 0

1 1

2 2

3 3

4 4

5 5

Sample Output

55

区间DP

dp[i][j][k] 表示i到j这个区间送完了,快递小哥在哪个端点。

关于区间DP,可以参照这个博客

http://blog.csdn.net/dacc123/article/details/50885903

#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <math.h>
#include <stdio.h> using namespace std;
#define MAX 100000000
int n,v,x;
struct Node
{
int xi;
int bi;
}a[1005];
int dp[1005][1005][2];
int cmp(Node a,Node b)
{
return a.xi<b.xi;
}
int sum[1005];
int main()
{
while(scanf("%d%d%d",&n,&v,&x)!=EOF)
{
for(int i=1;i<=n;i++)
{
scanf("%d%d",&a[i].xi,&a[i].bi);
}
a[n+1].xi=x;a[n+1].bi=0;
sort(a+1,a+n+2,cmp);
int pos=0;
sum[0]=0;
for(int i=1;i<=n+1;i++)
sum[i]=sum[i-1]+a[i].bi;
for(int j=1;j<=n+1;j++)
if(a[j].xi==x)
pos=j;
for(int i=0;i<=n+1;i++)
for(int j=0;j<=n+1;j++)
dp[i][j][0]=MAX,dp[i][j][1]=MAX;
dp[pos][pos][0]=0;
dp[pos][pos][1]=0;
for(int i=pos;i>=1;i--)
{
for(int j=pos;j<=n+1;j++)
{
if(i==j)
continue;
int num=sum[i-1]-sum[0]+sum[n+1]-sum[j];
dp[i][j][1]=min(dp[i][j][1],dp[i][j-1][1]+(a[j].xi-a[j-1].xi)*(a[j].bi+num));
dp[i][j][1]=min(dp[i][j][1],dp[i][j-1][0]+(a[j].xi-a[i].xi)*(a[j].bi+num));
dp[i][j][0]=min(dp[i][j][0],dp[i+1][j][0]+(a[i+1].xi-a[i].xi)*(a[i].bi+num));
dp[i][j][0]=min(dp[i][j][0],dp[i+1][j][1]+(a[j].xi-a[i].xi)*(a[i].bi+num));
}
}
printf("%d\n",min(dp[1][n+1][0],dp[1][n+1][1])*v); }
return 0;
}

ZOJ 3469Food Delivery(区间DP)的更多相关文章

  1. ZOJ 3469 Food Delivery 区间DP

    这道题我不会,看了网上的题解才会的,涨了姿势,现阶段还是感觉区间DP比较难,主要是太弱...QAQ 思路中其实有贪心的意思,n个住户加一个商店,分布在一维直线上,应该是从商店开始,先向两边距离近的送, ...

  2. ZOJ3469 Food Delivery —— 区间DP

    题目链接:https://vjudge.net/problem/ZOJ-3469 Food Delivery Time Limit: 2 Seconds      Memory Limit: 6553 ...

  3. ZOJ3469 Food Delivery 区间DP

    题意:有一家快餐店送外卖,现在同时有n个家庭打进电话订购,送货员得以V-1的速度一家一家的运送,但是每一个家庭都有一个不开心的值,每分钟都会增加一倍,值达到一定程度,该家庭将不会再订购外卖了,现在为了 ...

  4. zoj 3469 Food Delivery 区间dp + 提前计算费用

    Time Limit: 2 Seconds      Memory Limit: 65536 KB When we are focusing on solving problems, we usual ...

  5. ZOJ - 3469 Food Delivery (区间dp)

    When we are focusing on solving problems, we usually prefer to stay in front of computers rather tha ...

  6. ZOJ 3469 Food Delivery(区间DP好题)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4255 题目大意:在x轴上有n个客人,每个客人每分钟增加的愤怒值不同. ...

  7. Food Delivery ZOJ - 3469(区间dp)

    题目传送门 题目翻译:当我们专注于解决问题时,我们通常宁愿呆在电脑前而不是外出吃午饭.在这个时候,我们可能会要求提供食物. 假设有N个人生活在一条直线的街道上,它只是位于X坐标轴上.第i个人的坐标是X ...

  8. zoj 3537 Cake 区间DP (好题)

    题意:切一个凸边行,如果不是凸包直接输出.然后输出最小代价的切割费用,把凸包都切割成三角形. 先判断是否是凸包,然后用三角形优化. dp[i][j]=min(dp[i][j],dp[i][k]+dp[ ...

  9. zoj 3537 Cake(区间dp)

    这道题目是经典的凸包的最优三角剖分,不过这个题目给的可能不是凸包,所以要提前判定一下是否为凸包,如果是凸包的话才能继续剖分,dp[i][j]表示已经排好序的凸包上的点i->j上被分割成一个个小三 ...

随机推荐

  1. QHeaderView的点击和双击事件

    QTablewidget的horizontalHeader() 和 verticalHeader() 得到的表头:QHeaderView 点击事件的触发函数: sectionClicked(int) ...

  2. erlang的catch和 try catch的初步猜测

    一. catch(Fun):似乎可以避免因为 函数Fun内的错误而造成的当前的进程的崩溃.

  3. C#接口之IEnumerable,IEnumerator

    IEnumerable 截图来源于https://msdn.microsoft.com/zh-cn/library/system.collections.ienumerable.getenumerat ...

  4. 【Java NIO的深入研究2】RandomAccessFile的使用

    RandomAccessFile RandomAccessFile是用来访问那些保存数据记录的文件的,你就可以用seek( )方法来访问记录,并进行读写了.这些记录的大小不必相同:但是其大小和位置必须 ...

  5. jQuery-编辑选择结果(添加、筛选、过滤或检测)

    编辑选择结果 操作  实例  效果  备注 添加 添加选择器 $("p").add(".a") 添加类名为a的选择器 并不影响源结果集     $(" ...

  6. 怎样用MathType输入带分数

    MathType作为一种常用的数学公式编辑器.虽然其操作已经很简单了,但是对于刚刚接触MathType的新用户来说,一些最基本的MathType输入也是有一定难度的,一些人在MathType分数的编辑 ...

  7. _T("D:\\122.txt")【字符集问题】或【类型转换问题】

    项目->属性->常规->字符集->使用多字节字符集!时用_T("Filename"), 貌似不是字符集的问题!  1.使用替换,,,后, _T(" ...

  8. [转] 在图标库中,找到合适的图标 ico

    作者:xlrocket链接:https://www.zhihu.com/question/19857245/answer/241696797 在图标库中,找到合适的图标 或许,一些小伙伴会有收集图标的 ...

  9. 静默安装oracle 11g,环境预检查时报错,SEVERE: [FATAL] PRVF-0002 : 无法检索本地节点名

    环境描述: 操作系统:Redhat 6.6_x64 oracle:11.2.0.4 x64 问题描述: 今天在安装oracle 11g的数据库,在进行预安装环境检查的时候,报下面的错误: [oracl ...

  10. Linux-Oracle

    1.使用Oracle登录,或者其他用户登录,切换到Oracle账户下: 2.登录后在Oracle主目录后使用vi创建.bashrc文件: 3.在文件中输入如下参数: export ORACLE_SID ...