题意:进行翻硬币实验,若k次向上则结束,进行第n次实验需花费2*n-1的费用,询问期望结束次数及期望结束费用


设F[i]为第i次结束时的概率

F[i]=  c(i-1,k-1)*p^k*(1-p)^(i-k)

sigma(f[i])==1

p^k*sigma(c(i-1,k-1)*(1-p)^(i-k))=1

sigma(c(i-1,k-1)*(1-p)^(i-k))=1/(p^k)

ans1=sigma(i*f[i])

=p^k*sigma(i*c(i-1,k-1)*(1-p)^(i-k)) //将i放入组合数

=k*p^k*sigma(c(i,k)*(1-p)^(i-k))

=k*p^k*p^(k+1)

=k/p

ans2=sigma(i*i*f[i])

=p^k*sigma(i*i*c(i-1,k-1)*(1-p)^(i-k))

=k*p^k*sigma(i*c(i,k)*(1-p)^(i-k))

=k*p^k*sigma((i+1)*c(i,k)*(1-p)^(i-k))-p^k*sigma(c(i,k)*(1-p)^(1-k))

=k*(k+1)*p^k*sigma(c(i+1,k+1)*(1-p)^(i-k))-ans1 //将i+1放进去

=k*(k+1)*p^k/(p^(k+2))-ans1

=k*(k+1)/p^2-ans1

=[(k+1)/p]*ans1-ans1


这是数学上的做法...

发现这种做法并没有通用性

打算开始着手学习概率DP的入门

等入门后再补上DP的解法

期望一般从后面往前面推


【概率论】【POJ 3682】【King Arthur's Birthday Celebration】的更多相关文章

  1. poj 3682 King Arthur's Birthday Celebration (期望dp)

    传送门 解题思路 第一问比较简单,设$f[i]​$表示扔了$i​$次正面向上的硬币的期望,那么有转移方程 : $f[i]=f[i]*(1-p)+f[i-1]*p+1​$,意思就是$i​$次正面向上可以 ...

  2. poj-3682 King Arthur's Birthday Celebration

    C - King Arthur's Birthday Celebration POJ - 3682 King Arthur is an narcissist who intends to spare ...

  3. POJ3682 King Arthur's Birthday Celebration

    King Arthur is an narcissist who intends to spare no coins to celebrate his coming K-th birthday. Th ...

  4. King Arthur's Birthday Celebration

    每天抛一个硬币,硬币正面朝上的几率是p,直到抛出k次正面为止结束,第一天抛硬币需花费1,第二天花费3,然后是5,7,9……以此类推,让我们求出抛硬币的天数的期望和花费的期望. 天数期望: A.投出了k ...

  5. POJ3682;King Arthur's Birthday Celebration(期望)

    传送门 题意 进行翻硬币实验,若k次向上则结束,进行第n次实验需花费2*n-1的费用,询问期望结束次数及期望结束费用 分析 我们令f[i]为结束概率 \[f[i]=C_{i-1}^{k-1}*p^k* ...

  6. [POJ3682]King Arthur's Birthday Celebration[期望DP]

    也许更好的阅读体验 \(\mathcal{Description}\) 每天抛一个硬币,硬币正面朝上的几率是p,直到抛出k次正面为止结束,第\(i\)天抛硬币的花费为\(2i-1\),求出抛硬币的天数 ...

  7. POJ3682King Arthur's Birthday Celebration(数学期望||概率DP)

    King Arthur is an narcissist who intends to spare no coins to celebrate his coming K-th birthday. Th ...

  8. hdu4337 King Arthur's Knights

    King Arthur's Knights Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...

  9. hdu 4337 King Arthur's Knights (Hamilton)

    King Arthur's KnightsTime Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

随机推荐

  1. Android应用程序窗口(Activity)的运行上下文环境(Context)的创建过程分析

    文章转载至CSDN社区罗升阳的安卓之旅,原文地址:http://blog.csdn.net/luoshengyang/article/details/8201936 在前文中,我们简要介绍了Andro ...

  2. Starting httpd:Could not reliably determine the server's fully qualified domain name

    #service httpd start #Starting httpd: httpd: Could not reliably determine the server's fully qualifi ...

  3. asp.net后台的一些操作

    1.在后台绑定下拉框再返回到前台 protected StringBuilder sq = new StringBuilder();//为了在前台绑定 protected void Page_Load ...

  4. [转]WCF:如何将net.tcp协议寄宿到IIS

    本文转自:http://www.cnblogs.com/Gyoung/archive/2012/12/11/2812555.html 1 部署IIS 1.1 安装WAS IIS原本是不支持非HTTP协 ...

  5. 找出数组中特定和数字下标(JAVA)

    比如: 输入: numbers={2, 7, 11, 15}, target=9 输出: index1=1, index2=2 public class _003TwoSum { public sta ...

  6. Linux下安装oracle11g

    1.安装环境: Linux:Redhat Enterprise Linux 6.3 64位 Oracle:Oracle Database 11g for Linux x86-64 64位 2.修改操作 ...

  7. Java-----隐藏手机号中间四位

    phone.replaceAll("(\\d{3})\\d{4}(\\d{4})","$1****$2");152****4799 idCard.replace ...

  8. HDU 1056 - HangOver

    递推 #include <iostream> using namespace std; ]; double c; int main() { f[]=; ;i<=;i++) f[i]= ...

  9. error LNK2019: 无法解析的外部符号 "public:

    错误 1 error LNK2019: 无法解析的外部符号 "public: __thiscall test::test(void)" (??0test@@QAE@XZ),该符号在 ...

  10. C学习-fgets()篇1

    学习fgets()函数时发现了一个问题,先贴代码 #include<stdio.h> #include<string.h> #include<ctype.h> vo ...