【概率论】【POJ 3682】【King Arthur's Birthday Celebration】
题意:进行翻硬币实验,若k次向上则结束,进行第n次实验需花费2*n-1的费用,询问期望结束次数及期望结束费用
设F[i]为第i次结束时的概率
F[i]= c(i-1,k-1)*p^k*(1-p)^(i-k)
sigma(f[i])==1
p^k*sigma(c(i-1,k-1)*(1-p)^(i-k))=1
sigma(c(i-1,k-1)*(1-p)^(i-k))=1/(p^k)
ans1=sigma(i*f[i])
=p^k*sigma(i*c(i-1,k-1)*(1-p)^(i-k)) //将i放入组合数
=k*p^k*sigma(c(i,k)*(1-p)^(i-k))
=k*p^k*p^(k+1)
=k/p
ans2=sigma(i*i*f[i])
=p^k*sigma(i*i*c(i-1,k-1)*(1-p)^(i-k))
=k*p^k*sigma(i*c(i,k)*(1-p)^(i-k))
=k*p^k*sigma((i+1)*c(i,k)*(1-p)^(i-k))-p^k*sigma(c(i,k)*(1-p)^(1-k))
=k*(k+1)*p^k*sigma(c(i+1,k+1)*(1-p)^(i-k))-ans1 //将i+1放进去
=k*(k+1)*p^k/(p^(k+2))-ans1
=k*(k+1)/p^2-ans1
=[(k+1)/p]*ans1-ans1
这是数学上的做法...
发现这种做法并没有通用性
打算开始着手学习概率DP的入门
等入门后再补上DP的解法
期望一般从后面往前面推
【概率论】【POJ 3682】【King Arthur's Birthday Celebration】的更多相关文章
- poj 3682 King Arthur's Birthday Celebration (期望dp)
传送门 解题思路 第一问比较简单,设$f[i]$表示扔了$i$次正面向上的硬币的期望,那么有转移方程 : $f[i]=f[i]*(1-p)+f[i-1]*p+1$,意思就是$i$次正面向上可以 ...
- poj-3682 King Arthur's Birthday Celebration
C - King Arthur's Birthday Celebration POJ - 3682 King Arthur is an narcissist who intends to spare ...
- POJ3682 King Arthur's Birthday Celebration
King Arthur is an narcissist who intends to spare no coins to celebrate his coming K-th birthday. Th ...
- King Arthur's Birthday Celebration
每天抛一个硬币,硬币正面朝上的几率是p,直到抛出k次正面为止结束,第一天抛硬币需花费1,第二天花费3,然后是5,7,9……以此类推,让我们求出抛硬币的天数的期望和花费的期望. 天数期望: A.投出了k ...
- POJ3682;King Arthur's Birthday Celebration(期望)
传送门 题意 进行翻硬币实验,若k次向上则结束,进行第n次实验需花费2*n-1的费用,询问期望结束次数及期望结束费用 分析 我们令f[i]为结束概率 \[f[i]=C_{i-1}^{k-1}*p^k* ...
- [POJ3682]King Arthur's Birthday Celebration[期望DP]
也许更好的阅读体验 \(\mathcal{Description}\) 每天抛一个硬币,硬币正面朝上的几率是p,直到抛出k次正面为止结束,第\(i\)天抛硬币的花费为\(2i-1\),求出抛硬币的天数 ...
- POJ3682King Arthur's Birthday Celebration(数学期望||概率DP)
King Arthur is an narcissist who intends to spare no coins to celebrate his coming K-th birthday. Th ...
- hdu4337 King Arthur's Knights
King Arthur's Knights Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- hdu 4337 King Arthur's Knights (Hamilton)
King Arthur's KnightsTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
随机推荐
- Android应用程序窗口(Activity)的运行上下文环境(Context)的创建过程分析
文章转载至CSDN社区罗升阳的安卓之旅,原文地址:http://blog.csdn.net/luoshengyang/article/details/8201936 在前文中,我们简要介绍了Andro ...
- Starting httpd:Could not reliably determine the server's fully qualified domain name
#service httpd start #Starting httpd: httpd: Could not reliably determine the server's fully qualifi ...
- asp.net后台的一些操作
1.在后台绑定下拉框再返回到前台 protected StringBuilder sq = new StringBuilder();//为了在前台绑定 protected void Page_Load ...
- [转]WCF:如何将net.tcp协议寄宿到IIS
本文转自:http://www.cnblogs.com/Gyoung/archive/2012/12/11/2812555.html 1 部署IIS 1.1 安装WAS IIS原本是不支持非HTTP协 ...
- 找出数组中特定和数字下标(JAVA)
比如: 输入: numbers={2, 7, 11, 15}, target=9 输出: index1=1, index2=2 public class _003TwoSum { public sta ...
- Linux下安装oracle11g
1.安装环境: Linux:Redhat Enterprise Linux 6.3 64位 Oracle:Oracle Database 11g for Linux x86-64 64位 2.修改操作 ...
- Java-----隐藏手机号中间四位
phone.replaceAll("(\\d{3})\\d{4}(\\d{4})","$1****$2");152****4799 idCard.replace ...
- HDU 1056 - HangOver
递推 #include <iostream> using namespace std; ]; double c; int main() { f[]=; ;i<=;i++) f[i]= ...
- error LNK2019: 无法解析的外部符号 "public:
错误 1 error LNK2019: 无法解析的外部符号 "public: __thiscall test::test(void)" (??0test@@QAE@XZ),该符号在 ...
- C学习-fgets()篇1
学习fgets()函数时发现了一个问题,先贴代码 #include<stdio.h> #include<string.h> #include<ctype.h> vo ...