Lucas定理

  A、B是非负整数,p是质数。AB写成p进制:A=a[n]a[n-1]...a[0],B=b[n]b[n-1]...b[0]。

  则组合数C(A,B)与C(a[n],b[n])*C(a[n-1],b[n-1])*...*C(a[0],b[0])  modp同

  即:Lucas(n,m,p)=c(n%p,m%p)*Lucas(n/p,m/p,p)

  以求解n! % p为例,把n分段,每p个一段,每一段求的结果是一样的。但是需要单独处理每一段的末尾p, 2p, ...,把p提取出来,会发现剩下的数正好又是(n / p)!,相当于划归成了一个子问题,这样递归求解即可。这个是单独处理n!的情况,当然C(n,m)就是n!/(m!*(n-m)!),每一个阶乘都用上面的方法处理的话,就是Lucas定理了,注意这儿的p是素数是有必要的。

Lucas最大的数据处理能力是p在10^5左右,不能再大了,hdu 3037就是10^5级别的!

  未写main函数

const maxn=;

var n,m:int64;
fac:array [..maxn] of int64; function quickmod(a,b,mol:int64):int64;
var ans:int64;
begin
ans:=;
while b<> do
begin
if (b and )= then ans:=(ans*a) mod mol;
a:=a*a mod mol;
b:=b>>;
end;
exit(ans);
end; function get_fact(p:int64):int64;
var i:longint;
begin
fac[]:=;
for i:= to p do
fac[i]:=(fac[i-]*i) mod p;
end; function lucas(n,m,p:int64):int64;
var ans,aa,bb:int64;
begin
ans:=;
while (a>) and (k>) do
begin
aa:=a mod p;
bb:=b mod p;
if aa<bb then exit();
ans:=ans*fac[aa]*quickmod(fac[bb]*fac[aa-bb] mod p,p-,p) mod p;
a:=a div p;
k:=k div p;
end;
exit(ans);
end;

  当p很大怎么搞?显然这样直接开数组会MLE

  我们可以这样做。

  分子相乘取模,分母相乘取模

  对分母求逆元,分子乘逆元取模

  给个代码

  

const mol=;

var n,m:longint;

function inv(a,p:int64):int64;
var b,c,q,k1,k2,k3:int64;
begin
b:=p;
c:=a mod b;
q:=a div b;
k1:=;
k2:=;
k3:=(k1+p-q*k2 mod p) mod p;
while (c xor )<> do
begin
a:=b;
b:=c;
c:=a mod b;
q:=a div b;
k1:=k2;
k2:=k3;
k3:=(k1+p-q*k2 mod p) mod p;
end;
exit(k3);
end; function calc(x,y:int64):int64;
var i,j,ans,up,down:int64;
begin
i:=y+;
j:=x;
up:=;
down:=;
while i<=j do
begin
up:=up*i mod mol;
inc(i);
end;
i:=x-y;
while i>= do
begin
down:=down*i mod mol;
dec(i);
end;
ans:=inv(down,mol);
ans:=up*ans mod mol;
exit(ans);
end; begin
read(n,m);
writeln(calc(n+m,m));
end.

再来说逆元:

对于正整数,如果有,那么把这个同余方程中的最小正整数解叫做的逆元。

逆元一般用扩展欧几里得算法来求得,如果为素数,那么还可以根据费马小定理得到逆元为

推导过程如下

求现在来看一个逆元最常见问题,求如下表达式的值(已知

当然这个经典的问题有很多方法,最常见的就是扩展欧几里得,如果是素数,还可以用费马小定理。

但是你会发现费马小定理和扩展欧几里得算法求逆元是有局限性的,它们都会要求互素。实际上我们还有一

种通用的求逆元方法,适合所有情况。公式如下

现在我们来证明它,已知,证明步骤如下

接下来来实战一下,看几个关于逆元的题目。(转自ACdreamer犇的blog)

题目:http://poj.org/problem?id=1845

题意:给定两个正整数,求的所有因子和对9901取余后的值。

分析:很容易知道,先把分解得到,那么得到,那么

的所有因子和的表达式如下

  

第二种方法就是用等比数列求和公式,但是要用逆元。用如下公式即可

因为可能会很大,超过int范围,所以在快速幂时要二分乘法。

其实有些题需要用到的所有逆元,这里为奇质数。那么如果用快速幂求时间复杂度为

如果对于一个1000000级别的素数,这样做的时间复杂度是很高了。实际上有的算法,有一个递推式如下

它的推导过程如下,设,那么

对上式两边同时除,进一步得到

再把替换掉,最终得到

初始化,这样就可以通过递推法求出模奇素数的所有逆元了。

另外的所有逆元值对应中所有的数,比如,那么对应的逆元是

题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2186

题意:互质的数的个数,其中

分析:因为,所以,我们很容易知道如下结论

   对于两个正整数,如果的倍数,那么中与互素的数的个数为

     本结论是很好证明的,因为中与互素的个数为,又知道,所以

结论成立。那么对于本题,答案就是

其中为小于等于的所有素数,先筛选出来即可。由于最终答案对一个质数取模,所以要用逆元,这里

求逆元就有技巧了,用刚刚介绍的递推法预处理,否则会TLE的。

接下来还有一个关于逆元的有意思的题目,描述如下

证明:

其中

所以只需要证明,而我们知道的逆元对应全部

中的所有数,既是单射也是满射。

所以进一步得到

证明完毕!

C(n+m,m) mod p的一类算法的更多相关文章

  1. MOD 10,11算法(GB/T 17710-1999 数据处理 校验码系统 ),使用javascript实现

    原文链接:http://chunniu.info/p/74.html GB/T 17710-1999 数据处理 校验码系统 ,便于使用,使用javascript做了一个页面 [php] var NUM ...

  2. MOD 10,11算法(GB/T 17710-1999 数据处理 校验码系统 )的 Python实现

    以上是算法简要说明,以下代码为Python实现,不过注意代码中的N=15,不是16. # GB/T 17710 双模校验算法 # QQ 3257132998 def GB_Code(str): str ...

  3. 跨越千年的RSA算法

    转载自http://www.matrix67.com/blog/archives/5100 数论,数学中的皇冠,最纯粹的数学.早在古希腊时代,人们就开始痴迷地研究数字,沉浸于这个几乎没有任何实用价值的 ...

  4. [转载] TLS协议分析 与 现代加密通信协议设计

    https://blog.helong.info/blog/2015/09/06/tls-protocol-analysis-and-crypto-protocol-design/?from=time ...

  5. [转载]RSA算法详解

    原文:http://www.matrix67.com/blog/archives/5100 数论,数学中的皇冠,最纯粹的数学.早在古希腊时代,人们就开始痴迷地研究数字,沉浸于这个几乎没有任何实用价值的 ...

  6. TLS协议分析

    TLS协议分析 本文目标: 学习鉴赏TLS协议的设计,透彻理解原理和重点细节 跟进一下密码学应用领域的历史和进展 整理现代加密通信协议设计的一般思路 本文有门槛,读者需要对现代密码学有清晰而系统的理解 ...

  7. 整数快速乘法/快速幂+矩阵快速幂+Strassen算法

    快速幂算法可以说是ACM一类竞赛中必不可少,并且也是非常基础的一类算法,鉴于我一直学的比较零散,所以今天用这个帖子总结一下 快速乘法通常有两类应用:一.整数的运算,计算(a*b) mod c  二.矩 ...

  8. [模板] BSGS

    BSGS是一种解决一类专门的问题的解法,主要是解决已知A, B, C,求X使得A^x = B (mod p)这一类问题. 解法很简单,先设x = i*m-j(m=ceil(sqrt(p))),然后进行 ...

  9. NOIP 骗分技巧

    目录 第1章 绪论 第2章 从无解出发 \hookrightarrow↪ 2.1 无解情况 \hookrightarrow↪ 2.2 样例——白送的分数 第3章 “艰苦朴素永不忘” \hookrigh ...

随机推荐

  1. Attempted to lock an already-locked dir的解决方法

    第一,在当前目录使用“清理”功能,如果不行,到上一级目录,再执行“清理”. 第二,如果看到某个包里面的文件夹没有SVN的标志,直接用“Ctrl+Delete”手工删除,然后“清理”.

  2. Android 中退出程序的几种方法

    1.finish()方法 finish是Activity的类,仅仅针对Activity,当调用finish()时,只是将活动推向后台,并没有立即释放内存,活动的资源并没有被清理:调用finish()方 ...

  3. cursor的形状

    Example:CSS鼠标手型效果 <a href="#" style="cursor:hand">CSS鼠标手型效果</a> Exam ...

  4. Android setTag IllegalArgumentException

    E/AndroidRuntime(19480): java.lang.IllegalArgumentException: The key must be an application-specific ...

  5. [Leetcode][Python]36: Valid Sudoku

    # -*- coding: utf8 -*-'''__author__ = 'dabay.wang@gmail.com' 36: Valid Sudokuhttps://oj.leetcode.com ...

  6. mongoose的populate的使用方法;

    LotteryReceiveRecord.find({"lottery":req.params.id}).populate("user lottery").ex ...

  7. uva 301 Transportation 铁路公司的阳谋 纯dfs暴力

    题目比较难理解. 给出铁路的容量和站点数,以及几笔订单,要求算出如何盈利最大. 咋一看想贪心,但无法确定是最优解啊. 于是用dfs做,就两种状况,选与不选,先开一个每个站点的当前人数数组,假设要选,然 ...

  8. arduino循迹小车

    int MotorRight1=14; int MotorRight2=15; int MotorLeft1=16; int MotorLeft2=17; int MotorRPWM=3; int M ...

  9. Android 读取Assets中图片

    bgimg0 = getImageFromAssetsFile("Cat_Blink/cat_blink0000.png"); * * 从Assets中读取图片 */ privat ...

  10. codefirst初尝试

    Code First 约定 借助 CodeFirst,可通过使用 C# 或Visual Basic .NET 类来描述模型.模型的基本形状可通过约定来检测.约定是规则集,用于在使用 Code Firs ...