欧几里得算法求最大公约数

  • If A = 0 then GCD(A,B)=B, since the GCD(0,B)=B, and we can stop.
  • If B = 0 then GCD(A,B)=A, since the GCD(A,0)=A, and we can stop.
  • Write A in quotient remainder form (A = B⋅Q + R)
  • Find GCD(B,R) using the Euclidean Algorithm since GCD(A,B) = GCD(B,R)

这里Q是正整数.

Example:

Find the GCD of 270 and 192

  • A=270, B=192
  • A ≠0
  • B ≠0
  • Use long division to find that 270/192 = 1 with a remainder of 78. We can write this as: 270 = 192 * 1 +78
  • Find GCD(192,78), since GCD(270,192)=GCD(192,78)

A=192, B=78

  • A ≠0
  • B ≠0
  • Use long division to find that 192/78 = 2 with a remainder of 36. We can write this as:
  • 192 = 78 * 2 + 36
  • Find GCD(78,36), since GCD(192,78)=GCD(78,36)

A=78, B=36

  • A ≠0
  • B ≠0
  • Use long division to find that 78/36 = 2 with a remainder of 6. We can write this as:
  • 78 = 36 * 2 + 6
  • Find GCD(36,6), since GCD(78,36)=GCD(36,6)

A=36, B=6

  • A ≠0
  • B ≠0
  • Use long division to find that 36/6 = 6 with a remainder of 0. We can write this as:
  • 36 = 6 * 6 + 0
  • Find GCD(6,0), since GCD(36,6)=GCD(6,0)

A=6, B=0

  • A ≠0
  • B =0, GCD(6,0)=6

So we have shown:

GCD(270,192) = GCD(192,78) = GCD(78,36) = GCD(36,6) = GCD(6,0) = 6

GCD(270,192) = 6

应用:

int gcd(int a, int b) {
while(b){
int r = a % b;
a = b;
b = r;
}
return a;
}

Greatest common divisor(gcd)的更多相关文章

  1. 最大公约数Greatest Common Divisor(GCD)

    一 暴力枚举法 原理:试图寻找一个合适的整数i,看看这个整数能否被两个整形参数numberA和numberB同时整除.这个整数i从2开始循环累加,一直累加到numberA和numberB中较小参数的一 ...

  2. upc组队赛17 Greatest Common Divisor【gcd+最小质因数】

    Greatest Common Divisor 题目链接 题目描述 There is an array of length n, containing only positive numbers. N ...

  3. [UCSD白板题] Greatest Common Divisor

    Problem Introduction The greatest common divisor \(GCD(a, b)\) of two non-negative integers \(a\) an ...

  4. 845. Greatest Common Divisor

    描述 Given two numbers, number a and number b. Find the greatest common divisor of the given two numbe ...

  5. 2018CCPC桂林站G Greatest Common Divisor

    题目描述 There is an array of length n, containing only positive numbers.Now you can add all numbers by ...

  6. CCPC2018 桂林 G "Greatest Common Divisor"(数学)

    UPC备战省赛组队训练赛第十七场 with zyd,mxl G: Greatest Common Divisor 题目描述 There is an array of length n, contain ...

  7. greatest common divisor

    One efficient way to compute the GCD of two numbers is to use Euclid's algorithm, which states the f ...

  8. 最大公约数和最小公倍数(Greatest Common Divisor and Least Common Multiple)

    定义: 最大公约数(英语:greatest common divisor,gcd).是数学词汇,指能够整除多个整数的最大正整数.而多个整数不能都为零.例如8和12的最大公因数为4. 最小公倍数是数论中 ...

  9. hdu 5207 Greatest Greatest Common Divisor 数学

    Greatest Greatest Common Divisor Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/ ...

随机推荐

  1. 俄罗斯方块:Python实现

    网上搜到一个Pygame写的俄罗斯方块(tetris),大部分看懂的前提下增加了注释,Fedora19下运行OK的 主程序: #coding:utf8 #! /usr/bin/env python # ...

  2. POJ1743---Musical Theme (后缀数组+二分)

    题意 :求最长不相交重复子串的长度.. 可以先求出LCP,,对于长度 二分出答案..(竟然不会写二分) #include <set> #include <map> #inclu ...

  3. [LeetCode] 179. Largest Number 解题思路

    Given a list of non negative integers, arrange them such that they form the largest number. For exam ...

  4. HDU-3787(字符串模拟)

    Problem Description 给定两个整数A和B,其表示形式是:从个位开始,每三位数用逗号","隔开.现在请计算A+B的结果,并以正常形式输出.   Input 输入包含 ...

  5. linux loadavg详解(top cpu load)

    目录 [隐藏] 1 Loadavg分析 1.1 Loadavg浅述 1.2 Loadavg读取 1.3 Loadavg和进程之间的关系 1.4 Loadavg采样 2 18内核计算loadavg存在的 ...

  6. script标签的位置

    1.在我们编写代码的时候,会在页面内使用<script>标签来写JS,虽然理论上script标签的位置放在哪里可以,但是还是有一点区别的. 2.为什么很多人把script标签放在底部: 初 ...

  7. android4.4 settings 中控制卡1 卡2都振动

    在package/app/Settings/src/com/android/settings/SoundSettings.java

  8. Java static块

    首先,我们看一个实际例子: class Test{ public static int X=100; public final static int Y=200; public Test(){ Sys ...

  9. 第三章 Android绘图机制与处理技巧

    1.屏幕尺寸信息 屏幕大小:屏幕对角线长度,单位“寸”:分辨率:手机屏幕像素点个数,例如720x1280分辨率:PPI(Pixels Per Inch):即DPI(Dots Per Inch),它是对 ...

  10. hdu 1042

    貌似之前也写过这个题目的解题报告...老了,记性不好 从贴一遍吧! 代码理解很容易 AC代码: #include <iostream> #include <stdio.h> # ...