本文出自:http://blog.csdn.net/svitter

题意:在1~200,000个数中。取一段区间。然后在区间中找出最大的数和最小的数字。求这两个数字的差。

分析:按区间取值,非常明显使用的线段树。

区间大小取200000 * 4 = 8 * 10 ^5;

进行查询的时候。注意直接推断l, r 与mid的关系就可以。一開始写的时候直接与tree[root].L推断,多余了,

逻辑不对。

#include <iostream>
#include <stdio.h>
#include <stdlib.h> using namespace std;
const int INF = 0xffffff;
int maxV, minV; struct Node
{
int L, R;
int Mid(){ return (L+R)/2;}
int maxV, minV; //最大数和最小数
//Node *lchild, *rchild; 使用一位数组就能够不使用,能够看做全然二叉树(可能存在空间浪费)
}; Node tree[800010]; //四倍叶子节点 void Insert(int root, int n, int val)
{
//推断叶子节点
if(tree[root].L == tree[root].R)
{
tree[root].maxV = tree[root].minV = val;
return;
} //递归更新
tree[root].minV = min(tree[root].minV, val);
tree[root].maxV = max(tree[root].maxV, val); //当前为区间节点,寻找叶子节点
if(n < tree[root].Mid())
{
Insert(root*2+1, n, val);
}
else
{
Insert(root*2+2, n, val);
}
} void BuildTree(int root, int l, int r)
{
//建立当前节点
tree[root].L = l;
tree[root].R = r;
tree[root].maxV = -INF;
tree[root].minV = INF;
//递归调用建立子树
if(l != r)
{
BuildTree(root*2+1, l, (l+r)/2);
BuildTree(root*2+2, (l+r)/2+1, r);
} } void Query(int root, int l, int r)
{
//递归终止条件
if(l < tree[root].L || r > tree[root].R)
return; //推断条件:全然符合区间
if(l == tree[root].L && r == tree[root].R)
{
maxV = max(maxV, tree[root].maxV);
minV = min(minV, tree[root].minV);
return;
} if(r <= tree[root].Mid())
Query(root*2+1, l, r);
else if(l > tree[root].Mid())
Query(root*2+2, l, r);
else
{
Query(root*2+1, l, tree[root].Mid());
Query(root*2+2, tree[root].Mid()+1, r);
}
} int main()
{
int N, Q;
int val;
int a, b; //查找区间[a,b]
//while(scanf("%d%d", &N, &Q))
scanf("%d%d", &N, &Q);
{ BuildTree(0, 1, N);
for(int i = 0; i < N; i ++)
{
scanf("%d", &val);
Insert(0, i, val);
}
//用于測试线段树生成情况
// for(int i = 0; i < 7; i++)
// {
// printf("No:%d,\nL: %d,\nR: %d,\nMAX: %d,\nMIN: %d,\n\n", i, tree[i].L, tree[i].R, tree[i].maxV, tree[i].minV);
// }
while(Q--)
{
maxV = -INF, minV = INF;
scanf("%d%d", &a, &b);
Query(0, a, b);
// printf("max: %d\nmin: %d\n", maxV, minV);
printf("%d\n", maxV - minV);
}
} return 0;
}

POJ3264——Balanced Lineup(线段树)的更多相关文章

  1. POJ3264 Balanced Lineup —— 线段树单点更新 区间最大最小值

    题目链接:https://vjudge.net/problem/POJ-3264 For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000 ...

  2. POJ3264 Balanced Lineup 线段树区间最大值 最小值

    Q个数 问区间最大值-区间最小值 // #pragma comment(linker, "/STACK:1024000000,1024000000") #include <i ...

  3. BZOJ-1699 Balanced Lineup 线段树区间最大差值

    Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 41548 Accepted: 19514 Cas ...

  4. [POJ] 3264 Balanced Lineup [线段树]

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 34306   Accepted: 16137 ...

  5. 【POJ】3264 Balanced Lineup ——线段树 区间最值

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 34140   Accepted: 16044 ...

  6. bzoj 1636: [Usaco2007 Jan]Balanced Lineup -- 线段树

    1636: [Usaco2007 Jan]Balanced Lineup Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 772  Solved: 560线 ...

  7. poj3264 Balanced Lineup(树状数组)

    题目传送门 Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 64655   Accepted: ...

  8. POJ 3264 Balanced Lineup 线段树 第三题

    Balanced Lineup Description For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line ...

  9. poj 3264 Balanced Lineup(线段树、RMQ)

    题目链接: http://poj.org/problem?id=3264 思路分析: 典型的区间统计问题,要求求出某段区间中的极值,可以使用线段树求解. 在线段树结点中存储区间中的最小值与最大值:查询 ...

  10. POJ 3264 Balanced Lineup (线段树)

    Balanced Lineup For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the s ...

随机推荐

  1. c#计算文件的MD5值

    代码: /// <summary> /// 计算文件的 MD5 值 /// </summary> /// <param name="fileName" ...

  2. 51NOD 算法马拉松8

    题目戳这里:51NOD算法马拉松8 某天晚上kpm在玩OSU!之余让我看一下B题...然后我就被坑进了51Nod... A.还是01串 水题..怎么乱写应该都可以.记个前缀和然后枚举就行了.时间复杂度 ...

  3. Java学习之内部类

    示例1: package com.swust.面向对象; class Person1{ private String username="zhangsan"; public Per ...

  4. 5.6.3 String类型

    String类型是字符串的对象包装类型,可以像下面这样使用String构造函数来创建. var stringObject = new String("hello world"); ...

  5. Struts2,Spring,Hibernate三大框架的整合(SSH)

    一.搭建struts2 1).导入struts2 jar包 2).编写web.xml 3).编写jsp页面 4).创建action类,action类要继承ActionSupport类 5).创建str ...

  6. 国内外主流BI厂商对比

    BI(Business Intelligence),即商业智能或者商务智能,它是一套完整的解决方案,用来将企业中现有的数据进行有效的整合,快速准确的提供报表并提出决策依据,帮助企业做出明智的业务经营决 ...

  7. VICC国际标准ISO15693下载

    疏耦合卡(VICC)国际标准ISO15693-1点击下载 疏耦合卡(VICC)国际标准ISO15693-2点击下载 疏耦合卡(VICC)国际标准ISO15693-3点击下载

  8. 浅谈RFID电子标签封装技术

    1RFID技术概述 1.1RFID技术概念 RFID是RadioFrequencyIdentification的缩写,即射频识别技术,俗称电子标签.RFID射频识别是一种非接触式的自动识别技术,它通过 ...

  9. Delphi的MDI编程中遇到的一个奇怪问题(值得研究的一个问题)

    近日在用delphi写一个多文档应用程序,除了一个主界面是自动生成的,其他功能页面全部都是通过Application.CreateForm()动态生成的,也就是说在ProjectManager中点击程 ...

  10. QT全局热键(用nativeKeycode封装API,不跨平台)

    在网上找了很长时间,大家都提到了一个QT全局热键库(qxtglobalshortcut),支持跨平台.在这篇文章中,我将只展示出windows平台下全局热键的设置. 这里提供的方法是在MyGlobal ...