本人原创,转载请注明出处:http://blog.csdn.net/panjunbiao/article/details/12773163

下载Hadoop程序包,下载地址:http://hadoop.apache.org/releases.html#Download

如果是在CentOS服务器安装,则执行:
yum install hadoop-1.2.1-1.x86_64.rpm

如果是在Linux或者Mac OS X开发环境下,可以下载bin或者源码包,然后解压缩即可。

验证hadoop二进制执行文件(假设放在~/Developments/toolkits/hadoop-1.2.1文件夹中):
cd ~/Developments/toolkits/hadoop-1.2.1

执行hadoop程序:
bin/hadoop

Usage: hadoop [--config confdir] COMMAND
where COMMAND is one of:
namenode -format format the DFS filesystem
secondarynamenode run the DFS secondary namenode
namenode run the DFS namenode
datanode run a DFS datanode...

出现hadoop命令用法帮助,表示二进制文件可执行。

创建Hello Hadoop的Java项目:


按照《Hadoop权威指南(Hadoop: The Definitive Guide)》的例子,创建3个程序文件。


MaxTemperature.java

/**
* Created with IntelliJ IDEA.
* User: james
* Date: 8/27/13
* Time: 11:33 AM
* To change this template use File | Settings | File Templates.
*/
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class MaxTemperature {
public static void main(String[] args) throws Exception {
if (args.length != 2) {
System.err.println("Usage: MaxTemperature <input path> <output path>");
System.exit(-1);
} Job job = new Job();
job.setJarByClass(MaxTemperature.class);
job.setJobName("Max temperature");
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1])); job.setMapperClass(MaxTemperatureMapper.class);
job.setReducerClass(MaxTemperatureReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class); System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}

MaxTemperatureMapper.java

/**
* Created with IntelliJ IDEA.
* User: james
* Date: 8/27/13
* Time: 11:28 AM
* To change this template use File | Settings | File Templates.
*/
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper; public class MaxTemperatureMapper
extends Mapper<LongWritable, Text, Text, IntWritable> {
private static final int MISSING = 9999; @Override
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException { String line = value.toString();
String year = line.substring(15, 19);
int airTemperature;
if (line.charAt(87) == '+') { // parseInt doesn't like leading plus signs
airTemperature = Integer.parseInt(line.substring(88, 92));
} else {
airTemperature = Integer.parseInt(line.substring(87, 92));
}
String quality = line.substring(92, 93);
if (airTemperature != MISSING && quality.matches("[01459]")) {
context.write(new Text(year), new IntWritable(airTemperature));
}
}
}

MaxTemperatureReducer.java

/**
* Created with IntelliJ IDEA.
* User: james
* Date: 8/27/13
* Time: 11:32 AM
* To change this template use File | Settings | File Templates.
*/
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class MaxTemperatureReducer
extends Reducer<Text, IntWritable, Text, IntWritable> { @Override
public void reduce(Text key, Iterable<IntWritable> values,
Context context)
throws IOException, InterruptedException { int maxValue = Integer.MIN_VALUE;
for (IntWritable value : values) {
maxValue = Math.max(maxValue, value.get());
}
context.write(key, new IntWritable(maxValue));
}
}

需要将hadoop-core-1.2.1.jar文件添加到项目的库中,这个jar文件在解压缩的文件夹中

编译之,假设项目编译到文件夹~/Developments/hello-hadoop/out/production/hello-hadoop/中,将这个文件夹位置输出到HADOOP_CLASSPATH:


export HADOOP_CLASSPATH=~/Developments/hello-hadoop/out/production/hello-hadoop/

另外还要注意定义JAVA_HOME,以Mac OS X为例:


export JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk1.7.0_21.jdk/Contents/Home/

下载天气数据(
http://hadoopbook.com/code.html
),上面有1901年和1902年的天气例子数据。

进入hadoop文件夹:


cd ~/Developments/toolkits/hadoop-1.2.1

执行例子程序(这个MaxTemperature是hadoop程序通过HADOOP_CLASSPATH查找到的):

bin/hadoop MaxTemperature 1901 output

2013-10-15 17:56:40.412 java[5522:1703] Unable to load realm info from SCDynamicStore
13/10/15 17:56:41 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
13/10/15 17:56:41 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
13/10/15 17:56:41 WARN mapred.JobClient: No job jar file set. User classes may not be found. See JobConf(Class) or JobConf#setJar(String).
13/10/15 17:56:41 INFO input.FileInputFormat: Total input paths to process : 1
13/10/15 17:56:41 WARN snappy.LoadSnappy: Snappy native library not loaded
13/10/15 17:56:42 INFO mapred.JobClient: Running job: job_local1783370164_0001
13/10/15 17:56:42 INFO mapred.LocalJobRunner: Waiting for map tasks
13/10/15 17:56:42 INFO mapred.LocalJobRunner: Starting task: attempt_local1783370164_0001_m_000000_0
13/10/15 17:56:42 INFO mapred.Task: Using ResourceCalculatorPlugin : null
13/10/15 17:56:42 INFO mapred.MapTask: Processing split: file:/Users/james/Developments/hello-hadoop/out/production/hello-hadoop/1901:0+888190
13/10/15 17:56:42 INFO mapred.MapTask: io.sort.mb = 100
13/10/15 17:56:42 INFO mapred.MapTask: data buffer = 79691776/99614720
13/10/15 17:56:42 INFO mapred.MapTask: record buffer = 262144/327680
13/10/15 17:56:42 INFO mapred.MapTask: Starting flush of map output
13/10/15 17:56:42 INFO mapred.MapTask: Finished spill 0
13/10/15 17:56:42 INFO mapred.Task: Task:attempt_local1783370164_0001_m_000000_0 is done. And is in the process of commiting
13/10/15 17:56:42 INFO mapred.LocalJobRunner:
13/10/15 17:56:42 INFO mapred.Task: Task 'attempt_local1783370164_0001_m_000000_0' done.
13/10/15 17:56:42 INFO mapred.LocalJobRunner: Finishing task: attempt_local1783370164_0001_m_000000_0
13/10/15 17:56:42 INFO mapred.LocalJobRunner: Map task executor complete.
13/10/15 17:56:42 INFO mapred.Task: Using ResourceCalculatorPlugin : null
13/10/15 17:56:42 INFO mapred.LocalJobRunner:
13/10/15 17:56:42 INFO mapred.Merger: Merging 1 sorted segments
13/10/15 17:56:42 INFO mapred.Merger: Down to the last merge-pass, with 1 segments left of total size: 72206 bytes
13/10/15 17:56:42 INFO mapred.LocalJobRunner:
13/10/15 17:56:42 INFO mapred.Task: Task:attempt_local1783370164_0001_r_000000_0 is done. And is in the process of commiting
13/10/15 17:56:42 INFO mapred.LocalJobRunner:
13/10/15 17:56:42 INFO mapred.Task: Task attempt_local1783370164_0001_r_000000_0 is allowed to commit now
13/10/15 17:56:42 INFO output.FileOutputCommitter: Saved output of task 'attempt_local1783370164_0001_r_000000_0' to output
13/10/15 17:56:42 INFO mapred.LocalJobRunner: reduce > reduce
13/10/15 17:56:42 INFO mapred.Task: Task 'attempt_local1783370164_0001_r_000000_0' done.
13/10/15 17:56:43 INFO mapred.JobClient: map 100% reduce 100%
13/10/15 17:56:43 INFO mapred.JobClient: Job complete: job_local1783370164_0001
13/10/15 17:56:43 INFO mapred.JobClient: Counters: 17
13/10/15 17:56:43 INFO mapred.JobClient: File Output Format Counters
13/10/15 17:56:43 INFO mapred.JobClient: Bytes Written=21
13/10/15 17:56:43 INFO mapred.JobClient: File Input Format Counters
13/10/15 17:56:43 INFO mapred.JobClient: Bytes Read=888190
13/10/15 17:56:43 INFO mapred.JobClient: FileSystemCounters
13/10/15 17:56:43 INFO mapred.JobClient: FILE_BYTES_READ=1848986
13/10/15 17:56:43 INFO mapred.JobClient: FILE_BYTES_WRITTEN=245951
13/10/15 17:56:43 INFO mapred.JobClient: Map-Reduce Framework
13/10/15 17:56:43 INFO mapred.JobClient: Reduce input groups=1
13/10/15 17:56:43 INFO mapred.JobClient: Map output materialized bytes=72210
13/10/15 17:56:43 INFO mapred.JobClient: Combine output records=0
13/10/15 17:56:43 INFO mapred.JobClient: Map input records=6565
13/10/15 17:56:43 INFO mapred.JobClient: Reduce shuffle bytes=0
13/10/15 17:56:43 INFO mapred.JobClient: Reduce output records=1
13/10/15 17:56:43 INFO mapred.JobClient: Spilled Records=13128
13/10/15 17:56:43 INFO mapred.JobClient: Map output bytes=59076
13/10/15 17:56:43 INFO mapred.JobClient: Total committed heap usage (bytes)=331350016
13/10/15 17:56:43 INFO mapred.JobClient: SPLIT_RAW_BYTES=141
13/10/15 17:56:43 INFO mapred.JobClient: Map output records=6564
13/10/15 17:56:43 INFO mapred.JobClient: Combine input records=0
13/10/15 17:56:43 INFO mapred.JobClient: Reduce input records=6564

查看输出结果


ls output/

_SUCCESS     part-r-00000

vi output/part-r-00000

1901    317 

第一个Hadoop程序——Hello Hadoop的更多相关文章

  1. 编写hadoop程序并打成jar包上传到hadoop集群运行

    准备工作: 1. hadoop集群(我用的是hadoop-2.7.3版本),这里hadoop有两种:1是编译好的hadoop-2.7.3:2是源代码hadoop-2.7.3-src: 2. 自己的机器 ...

  2. IntelliJ IDEA + Maven环境编写第一个hadoop程序

    1. 新建IntelliJ下的maven项目 点击File->New->Project,在弹出的对话框中选择Maven,JDK选择你自己安装的版本,点击Next 2. 填写Maven的Gr ...

  3. hadoop浅尝 第一个hadoop程序

    hadoop编程程序员需要完成三个类. map类,reduce类和主类. map和reduce类自然是分别完成map和reduce.而主类则负责对这两个类设置job.完成这三个类之后,我们生成一个ja ...

  4. 运行第一个Hadoop程序,WordCount

    系统: Ubuntu14.04 Hadoop版本: 2.7.2 参照http://www.cnblogs.com/taichu/p/5264185.html中的分享,来学习运行第一个hadoop程序. ...

  5. 一起学Hadoop——使用IDEA编写第一个MapReduce程序(Java和Python)

    上一篇我们学习了MapReduce的原理,今天我们使用代码来加深对MapReduce原理的理解. wordcount是Hadoop入门的经典例子,我们也不能免俗,也使用这个例子作为学习Hadoop的第 ...

  6. 一个完整的hadoop程序开发过程

    目的 说明hadoop程序开发过程 前提条件 ubuntu或同类OS java1.6.0_45 eclipse-indigo hadoop-0.20.2 hadoop-0.20.2-eclipse-p ...

  7. 第一个Hadoop程序-单词计数

    上一篇配置了Hadoop,本文将测试一个Hadoop的小案例 hadoop的Wordcount程序是hadoop自带的一个小的案例,是一个简单的单词统计程序,可以在hadoop的解压包里找到,如下: ...

  8. 第一个hadoop 程序

    首先检查hadoop是否安装并配置正确然后建立WordCount.java文件里面保存package org.myorg; import java.io.IOException;import java ...

  9. 深入剖析HADOOP程序日志

    深入剖析HADOOP程序日志 前提 本文来自于 博客园 逖靖寒的世界 http://gpcuster.cnblogs.com 了解log4j的使用. 正文 本文来自于 博客园 逖靖寒的世界 http: ...

随机推荐

  1. ODBC与JDBC比較

    在学习J2EE的JDBC过程中,刚见到JDBC就立即联想到了ODBC,并且我们能够肯定他们之间有必定的关系.開始学它的时候还是认为有点晕,于是就查了非常多资料,与比較熟悉的ODBC进行了比較. 先各自 ...

  2. CAD 致命错误

    在用.net进行CAD二次开发的时候,偶尔会出现致命错误,经总结,发现有两点会引起致命错误,在此记下,一来供自己参考,二来与大家分享 : ) 致命错误一: 描述:声明了DBObject对象,但未将对象 ...

  3. JS 把 Wed Jul 15 2015 00:00:00 GMT+0800 转换成2015-07-15

    function strlen(str) { var len = 0; for (var i = 0; i < str.length; i++) { var c = str.charCodeAt ...

  4. cookie的expires属性和max-age属性

    expires属性 指 定了coolie的生存期,默认情况下coolie是暂时存在的,他们存储的值只在浏览器会话期间存在,当用户推出浏览器后这些值也会丢失,如果想让 cookie存在一段时间,就要为e ...

  5. OC-方法

    1.类声明 @interface Person : NSObject { @public int _height; int _weight; int _age; } // 如果你不想每次使用方法都需要 ...

  6. Java web 基础

  7. Linux_常用命令

    文件搜索 -find -locate -grep 字符串搜索 -grep 过滤 -grep/find/xargs/ 编辑 -sed 待续....

  8. gcc -lpthread 干什么用

    #include <stdio.h> #include <pthread.h> void *ThreadFunc(void *pArg)  //参数的值为123 { int i ...

  9. getActionBar().setTitle(); Java.lang.NullPoint异常解决方案

    getActionBar().setTitle(); Java.lang.NullPoint异常解决方案,是由于低版本不支持直接获取的缘故,修改方案: try changing your theme ...

  10. zookeeper参考

        ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护.名字服务.分布式同步.组服务等.     我需要运行几个 ...