Global Positioning System (GPS) is a navigation system based on a set of satellites orbiting approximately 20,000 kilometers above the earth. Each satellite follows a known orbit and transmits a radio signal that encodes the current time. If a GPS-equipped vehicle has a very accurate clock, it can compare its own local time with the time encoded in the signals received from the satellites. Since radio signals propagate at a known rate, the vehicle can compute the distance between its current location and the location of the satellite when the signal was broadcast. By measuring its distance from several satellites in known orbits, a vehicle can compute its position very accurately.

You must write a simple ``autopilot" program based on GPS navigation. To make the problem easier, we state it as a two-dimen sional problem. In other words, you do not need to take into account the curvature of the earth or the altitude of the satellites. Furthermore, the problem uses speeds that are more appropriate for airplanes and sound waves than for satellites and radio waves.

Given a set of signals from moving sources, your program must compute the receiving position on the Cartesian plane. Then, given a destination point on the plane, your program must compute the compass heading required to go from the receiving position to the destination. All compass headings are stated in degrees. Compass heading 0 (North) corresponds to the positive y direction, and compass heading 90 (East) corresponds to the positive x direction, as shown in Figure 1.

Input

The input consists of multiple data sets.

The first line of input in each data set contains an integer N ( 1N10), which is the number of signal sources in the set. This is followed by three floating point numbers: tx, and y. Here, t denotes the exact local time when all the signals are received, represented in seconds after the reference time (time 0), andx and y represent the coordinates of the destination point on the Cartesian plane. Each of the next N lines contains four floating-point numbers that carry information about one signal source. The first two numbers represent the known position of the signal source on the Cartesian plane at the reference time. The third number represents the direction of travel of the signal source in the form of a compass heading D ( 0D < 360). The fourth number is the time that is encoded in the signal-that is, the time when the signal was transmitted, represented in seconds after the reference time. The magnitudes of all numbers in the input file are less than 10000 and no floating-point number has more than 5 digits after the decimal point.

The last data set is followed by a line containing four zeros.

The unit distance in the coordinate space is one meter. Assume that each signal source is moving over the Cartesian plane at a speed of 100 meters per second and that the broadcast signal propagates at a speed of 350 meters per second. Due to inaccuracies in synchronizing clocks, assume that your distance calculations are accurate only to 0.1 meter. That is, if two points are computed to be within 0.1 meter of each other, you should treat them as the same point. There is also the possibility that a signal may have been corrupted in transmission, so the data received from multiple signals may be inconsistent.

Output

For each trial, print the trial number followed by the compass heading from the receiving location to the destination, in degrees rounded to the nearest integer. Use the labeling as shown in the example output. If the signals do not contain enough information to compute the receiving location (that is, more than one position is consistent with the signals), print ` Inconclusive '. If the signals are inconsistent (that is, no position is consistent with the signals), print ` Inconsistent '. If the receiving location is within 0.1 meter of the destination, print ` Arrived '. If the situation is Inconclusive or Inconsistent, then you do not need to consider the case Arrived.

Figure 2 above corresponds to the first sample input. The locations of the three satellites at time t = 0are A (-100,350), B (350,-100) and C (350,800). The signals received by the GPS unit were transmitted at time t = 1.75, when the satellites were at locations A', B', and C' (however, in general the signals received by the GPS unit might have been transmitted at different times). The signals from the three satellites converge at D at time t = 2.53571, which means D is the location of the receiving GPS unit. From point D, a compass course of 45 degrees leads toward the destination point of (1050, 1050).

Sample Input

3  2.53571  1050.0  1050.0
-100.0 350.0 90.0 1.75
350.0 -100.0 0.0 1.75
350.0 800.0 180.0 1.75
2 2.0 1050.0 1050.0
-100.0 350.0 90.0 1.0
350.0 -100.0 0.0 1.0
0 0 0 0

Sample Output

Trial 1: 45 degrees
Trial 2: Inconclusive
#include<cstdio>
#include<cmath>
double t,x,y,ox[12],oy[12],r[12],px,py,dx,dy,dr,degree,ti,pi,dis,lx,ly,xa,ya,xb,yb;
int n,i,cases,c1,c2; int check(double x,double y)
{
int i;
double dx,dy;
for(i=0;i<n;i++)
{
dx=x-ox[i];
dy=y-oy[i];
dr=sqrt(dx*dx+dy*dy)-r[i];
if(fabs(dr)>0.1)
return 0;
}
return 1;
} int main()
{
pi=acos(-1.0);
while(scanf("%d%lf%lf%lf",&n,&t,&x,&y)&&n)
{
for(i=0;i<n;i++)
{
scanf("%lf%lf%lf%lf",&px,&py,°ree,&ti);
degree=(90-degree)/180*pi;
dis=100*ti;
ox[i]=px+dis*cos(degree);
oy[i]=py+dis*sin(degree);
r[i]=350*(t-ti);
}
printf("Trial %d: ",++cases);
for(i=1;i<n;i++)
{
dx=ox[i]-ox[0];
dy=oy[i]-oy[0];
dr=r[i]-r[0];
if(dx*dx+dy*dy+dr*dr>0.01)
break;
}
if(i>=n)
{
puts("Inconclusive");
continue;
}
dis=sqrt(dx*dx+dy*dy);
if(dis<0.1)
{
puts("Inconsistent");
continue;
}
lx=(dis*dis+r[0]*r[0]-r[i]*r[i])/dis/2;
if(fabs(lx)>r[0]+0.1)
{
puts("Inconsistent");
continue;
}
if(lx>r[0])
lx=r[0];
if(lx<-r[0])
lx=-r[0];
ly=sqrt(r[0]*r[0]-lx*lx);
dx/=dis;
dy/=dis;
xa=ox[0]+dx*lx-dy*ly;
ya=oy[0]+dy*lx+dx*ly;
xb=ox[0]+dx*lx+dy*ly;
yb=oy[0]+dy*lx-dx*ly;
if(sqrt((xa-xb)*(xa-xb)+(ya-yb)*(ya-yb))<0.1)
{
xb=1e9;
yb=1e9;
}
c1=check(xa,ya);
c2=check(xb,yb);
if(c1+c2==1)
{
if(c2)
{
xa=xb;
ya=yb;
}
dx=x-xa;
dy=y-ya;
dis=sqrt(dx*dx+dy*dy);
if(dis<0.1)
puts("Arrived");
else
{
if(dy>0)
degree=acos(dx/dis);
else
degree=pi*2-acos(dx/dis);
degree=90-degree/pi*180;
if(degree<0)
degree+=360;
if(degree>360)
degree-=360;
printf("%.0lf degrees\n",degree);
}
}
else
if(c1)
puts("Inconclusive");
else
puts("Inconsistent");
}
return 0;
}

1034 - Navigation的更多相关文章

  1. arcgis api for js共享干货系列之二自定义Navigation控件样式风格

    arcgis api for js默认的Navigation控件样式风格如下图: 这样的风格不能说不好,各有各的爱好,审美观,这里也不是重点,这里的重点是如何自定义一套自己喜欢的样式风格呢:自己自定义 ...

  2. The Safe Navigation Operator (&.) in Ruby

    The most interesting addition to Ruby 2.3.0 is the Safe Navigation Operator(&.). A similar opera ...

  3. Unity3D 导航网格自动寻路(Navigation Mesh)

    NavMesh(导航网格)是3D游戏世界中用于实现动态物体自动寻路的一种技术,将游戏中复杂的结构组织关系简化为带有一定信息的网格,在这些网格的基础上通过一系列的计算来实现自动寻路..导航时,只需要给导 ...

  4. ABP理论学习之导航(Navigation)

    返回总目录 本篇目录 创建菜单 注册导航提供者 展示菜单 每一个web应用在页面之间都有一些要导航的菜单.ABP提供了公用的基础设施来创建菜单并将菜单展示给用户. 创建菜单 一个应用可能由不同的模块组 ...

  5. Sharepoint学习笔记—ECM系列—文档列表的Metedata Navigation与Key Filter功能的实现

    如果一个文档列表中存放了成百上千的文档,想要快速的找到你想要的还真不是件容易的事,Sharepoint提供了Metedata Navigation与Key Filter功能可以帮助我们快速的过滤和定位 ...

  6. iOS第八课——Navigation Controller和Tab bar Controller

    今天我们要学习Navigation Controller和Tab bar Controller. Navigation Controller是iOS编程中比较常用的一种容器,用来管理多个视图控制器. ...

  7. navigation和tabbar上的文字.图片 自定义

    [[UITabBarItem appearance] setTitleTextAttributes:@{ UITextAttributeTextColor : [UIColor blackColor] ...

  8. navigation controller

    一.程序框架 1.程序结构

  9. Xcode6 storyboard new push segue 后的视图控制器没有navigation item bug.

    手动切一下 老的push,再切回来,就会出有了,我想是一个bug. Xcode 6 Segue with UINavigationItem up vote0down votefavorite   I' ...

随机推荐

  1. 使用Canvas实现下雪功能

    示例代码: <html> <head> <meta http-equiv="Content-Type" content="text/html ...

  2. Springmvc整合mybatis

    http://blog.csdn.net/geloin/article/details/7536968 http://blog.csdn.net/woshi74/article/details/378 ...

  3. oracle 数据库开发面试题,当时笔试的时候一个没做出来,现附原题及答案

    1. ID123567810111215 表名tt,用sql找出ID列中不连续的ID,例如其中没有的4: --创建表及数据 CREATE TABLE tt(ID INTEGER); INSERT IN ...

  4. xcode 删除 Provisioning Profile

    provisioning profile path: ~/Library/MobileDevice/Provisioning Profiles 打开并日期排序,删除老的 provisioning pr ...

  5. java swing 音乐播放器-乐乐音乐

    乐乐音乐1.0(本地版) 乐乐音乐是基于musique 开源播放器开发的java swing音乐播放器,实现了mp3.flac.ape.wav等多种音频格式的播放和ksc歌词的解析.制作和显示. 完成 ...

  6. Python文件之----CSV

    # -*- coding:utf-8 -*- ''' Created on 2015年4月20日 @author: liuxue ''' import csv import sys reload(sy ...

  7. Ajax--JavaScript实现

    Ajax:一种不用刷新整个页面便可与服务器通讯的办法 Ajax实现的步骤: 1.创建XMLHttpRequest对象 2.服务器向浏览器响应请求(注册监听) 3.浏览器与服务器建立连接 4.浏览器向服 ...

  8. Qt5-控件-QMenu,QMenuBar-菜单栏详解-菜单热键-菜单校验功能

    #ifndef MAINWINDOW_H #define MAINWINDOW_H #include <QMainWindow> #include <QMenu> #inclu ...

  9. linux下定时任务

    一.linux定时任务软件种类 .at : 适合执行一次的任务.突发性的任务.需要启动 atd 服务才能执行任务. .crontab: 周期性的执行任务工作:启动crond 服务后可以执行任务.最常用 ...

  10. 清除IE下链接虚线框

    方法一:利用javascript的onfocus事件,实现如下: Html代码 <a href="http://www.www.baidu.com"  onfocus=&qu ...