P3389 【模板】高斯消元法

以下内容都可省略,直接转大佬博客%%%

高斯消元总结

只会背板子的蒟蒻,高斯消元是什么,不知道诶,看到大佬们都会了这个水题,蒟蒻只好也来切一切

高斯消元最大用途就是解多元一次方程组——引自某大佬原话

的确是这样的,那么如何去做呢?

类比二元一次方程组:

$a_1x+b_1y=c_1$

$a_2x+b_2y=c_2$

emmm,怎么做呢?消去一项!嗯。

也就是把第$i$个方程的第$i$项变成1

$\frac{a_1}{a_1}x+\frac{b_1}{a_1}y=\frac{c_1}{a_1}$

也就是$x+\frac{b_1}{a_1}y=\frac{c_1}{a_1}$

再用这个式子消去第$i+1$到$n$方程的第$i$项,

$\frac{a_2}{a_2}x+\frac{b_2}{a_2}y=\frac{c_2}{a_2}$

也就是$x+\frac{b_2}{a_2}y=\frac{c_2}{a_2}$

用这一项减去上一项$0+(\frac{b_2}{a_2}-\frac{b_1}{a_1})y=\frac{c_2}{a_2}-\frac{c_1}{a_1}$

由于将每一项的系数都化为一比较麻烦,我们尝试直接消去那一项

$a_1x+b_1y=c_1$

$a_2x+b_2y=c_2$

第二项变成$a_2\times \frac{a_1}{a_2}x+b_2\times \frac{a_1}{a_2}y=c_2\times \frac{a_1}{a_2}$

消去第一项$(a_2\times \frac{a_1}{a_2}-a_1)x+(b_2\times \frac{a_1}{a_2}-b_1)y=c_2\times \frac{a_1}{a_2}-c_1$

这样是可行的,同样是把第二个方程组的第一项系数化为$0$

for(int i=;i<=n;i++){
if(!a[i][i]) return puts("No Solution\n"),;
for(int j=i+;j<=n;j++)
for(int k=n+;k>=i;k--)
a[j][k]=a[j][k]*a[i][i]/a[j][i]-a[i][k];
}//消元

不过大佬们都是这样写的,见代码:

$a_1x+b_1y=c_1$

$(a_2-\frac{a_2}{a_1}\times a_1)x+(b_2-\frac{a_2}{a_1}\times b_1)y=c_2-\frac{a_2}{a_1}\times c_1$

貌似这才是正确的操作,相当于把第一个方程同除以$a_1$,第二个方程减去$a_2\times...$

回代过程略。。。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm> using namespace std; double a[][],x[];
int n; int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)//n个方程
for(int j=;j<=n+;j++)//n项以及最后c
scanf("%lf",&a[i][j]); for(int i=;i<=n;i++){//枚举每一方程
if(!a[i][i]) return puts("No Solution\n"),;
for(int j=i+;j<=n;j++)
for(int k=n+;k>=i;k--)
a[j][k]-=a[i][k]*a[j][i]/a[i][i];
}//消元 for(int i=n;i;i--){
x[i]=a[i][n+];
for(int j=n;j>i;j--) x[i]-=a[i][j]*x[j];
x[i]/=a[i][i];
}//回代
for(int i=;i<=n;i++)
printf("%.2lf\n",x[i]); return ;
}

洛谷——P3389 【模板】高斯消元法的更多相关文章

  1. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  2. 洛谷P3375 [模板]KMP字符串匹配

    To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...

  3. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

  4. 【AC自动机】洛谷三道模板题

    [题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...

  5. 洛谷-P5357-【模板】AC自动机(二次加强版)

    题目传送门 -------------------------------------- 过年在家无聊补一下这周做的几道AC自动机的模板题 sol:AC自动机,还是要解决跳fail边产生的重复访问,但 ...

  6. 洛谷.1919.[模板]A*B Problem升级版(FFT)

    题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...

  7. 洛谷.3803.[模板]多项式乘法(FFT)

    题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...

  8. 洛谷.3803.[模板]多项式乘法(NTT)

    题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...

  9. 洛谷P3385 [模板]负环 [SPFA]

    题目传送门 题目描述 暴力枚举/SPFA/Bellman-ford/奇怪的贪心/超神搜索 输入输出格式 输入格式: 第一行一个正整数T表示数据组数,对于每组数据: 第一行两个正整数N M,表示图有N个 ...

  10. [洛谷P3806] [模板] 点分治1

    洛谷 P3806 传送门 这个点分治都不用减掉子树里的了,直接搞就行了. 注意第63行 if(qu[k]>=buf[j]) 不能不写,也不能写成>. 因为这个WA了半天...... 如果m ...

随机推荐

  1. java Bean及其使用

    1 getter/setter方法 java例子: public class student { private String name; public String getName() { retu ...

  2. expand_dims

    tf.expand_dims  |  TensorFlow https://tensorflow.google.cn/api_docs/python/tf/expand_dims tf.expand_ ...

  3. ImportError: cannot import name _imaging

    python - No module named 'PIL' - Stack Overflow  https://stackoverflow.com/questions/49247310/no-mod ...

  4. CSP 201703-4 地铁修建【最小生成树+并查集】

    问题描述 试题编号: 201703-4 试题名称: 地铁修建 时间限制: 1.0s 内存限制: 256.0MB 问题描述: 问题描述 A市有n个交通枢纽,其中1号和n号非常重要,为了加强运输能力,A市 ...

  5. JTabbedPane的LookAndFeel--TabbedPaneUI

    在定制JTabbedPane的时候是需要使用到LookAndFeel的,而使用LookAndFeel定制的时候,其实主要是继承BasicTabbedPaneUI. to be continue...

  6. EasyUI Calendar 日历

    转自:http://www.jeasyui.net/plugins/175.html 通过 $.fn.calendar.defaults 重写默认的 defaults. 日历(calendar)显示允 ...

  7. vs code 快速生成vue 模板

    vs code 快速生成vue 模板 1.使用快捷Ctrl + Shift + P唤出控制台,然后输入snippets并选择.(或 文件>首选项>用户代码片断里面,输入 vue.json ...

  8. Java中的APT的工作过程

    Java中的APT的工作过程 APT即Annotatino Processing Tool, 他的作用是处理代码中的注解, 用来生成代码, 换句话说, 这是用代码生成代码的工具, 减少boilerpl ...

  9. [C++ STL] 常用算法总结

    1 概述 STL算法部分主要由头文件<algorithm>,<numeric>,<functional>组成.要使用 STL中的算法函数必须包含头文件<alg ...

  10. Linux C编程 GCC的使用

    本篇文章面向一些会linux文件操作与vim基本命令,编程大佬请移步勿喷. gcc是默认安装的,但是其还缺少常用的头文件和库文件,所以还需要build-essential这个包,可以在联网状态下使用如 ...