洛谷——P3389 【模板】高斯消元法
P3389 【模板】高斯消元法
以下内容都可省略,直接转大佬博客%%%
高斯消元总结
只会背板子的蒟蒻,高斯消元是什么,不知道诶,看到大佬们都会了这个水题,蒟蒻只好也来切一切
高斯消元最大用途就是解多元一次方程组——引自某大佬原话
的确是这样的,那么如何去做呢?
类比二元一次方程组:
$a_1x+b_1y=c_1$
$a_2x+b_2y=c_2$
emmm,怎么做呢?消去一项!嗯。
也就是把第$i$个方程的第$i$项变成1
$\frac{a_1}{a_1}x+\frac{b_1}{a_1}y=\frac{c_1}{a_1}$
也就是$x+\frac{b_1}{a_1}y=\frac{c_1}{a_1}$
再用这个式子消去第$i+1$到$n$方程的第$i$项,
$\frac{a_2}{a_2}x+\frac{b_2}{a_2}y=\frac{c_2}{a_2}$
也就是$x+\frac{b_2}{a_2}y=\frac{c_2}{a_2}$
用这一项减去上一项$0+(\frac{b_2}{a_2}-\frac{b_1}{a_1})y=\frac{c_2}{a_2}-\frac{c_1}{a_1}$
由于将每一项的系数都化为一比较麻烦,我们尝试直接消去那一项
$a_1x+b_1y=c_1$
$a_2x+b_2y=c_2$
第二项变成$a_2\times \frac{a_1}{a_2}x+b_2\times \frac{a_1}{a_2}y=c_2\times \frac{a_1}{a_2}$
消去第一项$(a_2\times \frac{a_1}{a_2}-a_1)x+(b_2\times \frac{a_1}{a_2}-b_1)y=c_2\times \frac{a_1}{a_2}-c_1$
这样是可行的,同样是把第二个方程组的第一项系数化为$0$
for(int i=;i<=n;i++){
if(!a[i][i]) return puts("No Solution\n"),;
for(int j=i+;j<=n;j++)
for(int k=n+;k>=i;k--)
a[j][k]=a[j][k]*a[i][i]/a[j][i]-a[i][k];
}//消元
不过大佬们都是这样写的,见代码:
$a_1x+b_1y=c_1$
$(a_2-\frac{a_2}{a_1}\times a_1)x+(b_2-\frac{a_2}{a_1}\times b_1)y=c_2-\frac{a_2}{a_1}\times c_1$
貌似这才是正确的操作,相当于把第一个方程同除以$a_1$,第二个方程减去$a_2\times...$
回代过程略。。。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm> using namespace std; double a[][],x[];
int n; int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)//n个方程
for(int j=;j<=n+;j++)//n项以及最后c
scanf("%lf",&a[i][j]); for(int i=;i<=n;i++){//枚举每一方程
if(!a[i][i]) return puts("No Solution\n"),;
for(int j=i+;j<=n;j++)
for(int k=n+;k>=i;k--)
a[j][k]-=a[i][k]*a[j][i]/a[i][i];
}//消元 for(int i=n;i;i--){
x[i]=a[i][n+];
for(int j=n;j>i;j--) x[i]-=a[i][j]*x[j];
x[i]/=a[i][i];
}//回代
for(int i=;i<=n;i++)
printf("%.2lf\n",x[i]); return ;
}
洛谷——P3389 【模板】高斯消元法的更多相关文章
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- 洛谷P3375 [模板]KMP字符串匹配
To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...
- LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...
- 【AC自动机】洛谷三道模板题
[题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...
- 洛谷-P5357-【模板】AC自动机(二次加强版)
题目传送门 -------------------------------------- 过年在家无聊补一下这周做的几道AC自动机的模板题 sol:AC自动机,还是要解决跳fail边产生的重复访问,但 ...
- 洛谷.1919.[模板]A*B Problem升级版(FFT)
题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...
- 洛谷.3803.[模板]多项式乘法(FFT)
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...
- 洛谷.3803.[模板]多项式乘法(NTT)
题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...
- 洛谷P3385 [模板]负环 [SPFA]
题目传送门 题目描述 暴力枚举/SPFA/Bellman-ford/奇怪的贪心/超神搜索 输入输出格式 输入格式: 第一行一个正整数T表示数据组数,对于每组数据: 第一行两个正整数N M,表示图有N个 ...
- [洛谷P3806] [模板] 点分治1
洛谷 P3806 传送门 这个点分治都不用减掉子树里的了,直接搞就行了. 注意第63行 if(qu[k]>=buf[j]) 不能不写,也不能写成>. 因为这个WA了半天...... 如果m ...
随机推荐
- 怎样处理Gradle中的这个文件下载慢的问题的
如图:在build.gradle中的dependencies中加上要依赖的包后,就点击sync gradle.然后就开始了下载.在此过程中我是FQ了的(在此同时我是可以用chrome进入https:/ ...
- 玲珑学院OJ 1028 - Bob and Alice are playing numbers 字典树,dp
http://www.ifrog.cc/acm/problem/1028 题解处:http://www.ifrog.cc/acm/solution/4 #include <cstdio> ...
- 深入理解JMM(Java内存模型) --(二)重排序
[转载自并发编程网 – ifeve.com 原文链接:http://ifeve.com/tag/jmm/] 数据依赖性 如果两个操作访问同一个变量,且这两个操作中有一个为写操作,此时这两个操作之间就存 ...
- java笔记线程方式2
方式2:实现Runnable接口 * 步骤: * A:自定义类MyRunnable实现Runnable接口 * B:重写run()方法 * C:创建MyRunnable类的对象 * D ...
- 洛谷 P3121 [USACO15FEB]审查(黄金)Censoring (Gold) 【AC自动机+栈】
这个和bzoj同名题不一样,有多个匹配串 但是思路是一样的,写个AC自动机,同样是开两个栈,一个存字符,一个存当前点在trie树上的位置,然后如果到了某个匹配串的末尾,则弹栈 #include< ...
- 源码阅读之ArrayList(JDK8)
ArrayList概述 ArrayList是一个的可变数组的实现,实现了所有可选列表操作,并允许包括 null 在内的所有元素.每个ArrayList实例都有一个容量,该容量是指用来存储列表元素的数组 ...
- GIT学习之路最终日 标签管理+总结
本文参考廖雪峰老师的博客进行总结,完整学习请转廖雪峰博客 6.1 创建标签 命令git tag (name)用于新建一个标签,默认为HEAD,也可以指定一个commit id: git tag -a ...
- 解决WebSocket后台报错:The WebSocket session [0] has been closed and no method (apart from close()) may be called on a closed session
场景1: 在后台数据对前台页面进行数据实时推送下,后台采取定时查询数据后,推送给前台页面.在这个过程中,前台页面不停的刷新页面,session在不停的关闭和开启,推送数据时,会出现session连接已 ...
- 309 Best Time to Buy and Sell Stock with Cooldown 买股票的最佳时间含冷冻期
Say you have an array for which the ith element is the price of a given stock on day i.Design an alg ...
- pom.xml详情
这里借鉴一下csdn中的一个系列的博客: 第一篇:POM文件详解 第二篇:maven中的依赖作用范围 第三篇:maven中的可选依赖和依赖排除 第四篇:maven中的dependencies和depe ...