基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题
 收藏
 关注
编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。
例如将kitten一字转成sitting:
sitten (k->s)
sittin (e->i)
sitting (->g)
所以kitten和sitting的编辑距离是3。俄罗斯科学家Vladimir Levenshtein在1965年提出这个概念。
给出两个字符串a,b,求a和b的编辑距离。
Input
第1行:字符串a(a的长度 <= 1000)。
第2行:字符串b(b的长度 <= 1000)。
Output
输出a和b的编辑距离
Input示例
kitten
sitting
Output示例
3

分析:对于两个字符串s和t,dp[i][j]记录s的前i个字符转换到t的前j个字符的最小编辑距离。那么很容易得到转移方程 dp[i][j] = min(dp[i][j], dp[i-1][j-1] + s[i-1] == t[j-1] ? 0 : 1)。对每个dp[i][j],我们考虑直接从dp[i-1][j]或dp[i][j-1]加一个字符,所以初始为dp[i][j]
= min(dp[i-1][j], dp[i][j-1]) + 1。对于dp[0][i]和dp[i][0],显然都等于i。

#include <iostream>
#include<stdio.h>
#include<string.h>
using namespace std; const int N=1e3+5;
int T,cas=0;
int n,m;
int dp[N][N];
char s[N],t[N]; int main()
{
while(scanf("%s%s",s,t)!=EOF)
{
int n=strlen(s),m=strlen(t);
for(int i=0;i<=n;i++)
dp[i][0]=i;
for(int i=0;i<=m;i++)
dp[0][i]=i;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
dp[i][j]=min(dp[i-1][j],dp[i][j-1])+1;
dp[i][j]=min(dp[i][j],dp[i-1][j-1]+(s[i-1]!=t[j-1]));
}
}
printf("%d\n",dp[n][m]);
}
return 0;
}

51nod1183 编辑距离的更多相关文章

  1. 51nod--1183 编辑距离(动态规划)

    题目: 1183 编辑距离 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指 ...

  2. 51nod1183 编辑距离【动态规划】

    编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除 ...

  3. 【51nod-1183】编辑距离

    链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1183 #include <bits/stdc++.h> ...

  4. [LeetCode] One Edit Distance 一个编辑距离

    Given two strings S and T, determine if they are both one edit distance apart. 这道题是之前那道Edit Distance ...

  5. C#实现Levenshtein distance最小编辑距离算法

    Levenshtein distance,中文名为最小编辑距离,其目的是找出两个字符串之间需要改动多少个字符后变成一致.该算法使用了动态规划的算法策略,该问题具备最优子结构,最小编辑距离包含子最小编辑 ...

  6. 利用Levenshtein Distance (编辑距离)实现文档相似度计算

    1.首先将word文档解压缩为zip /** * 修改后缀名 */ public static String reName(String path){ File file=new File(path) ...

  7. 51nod1183(Edit Distance)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1183 题意:中文题啦- 思路:dp 用dp[i][j]表示从 ...

  8. Levenshtein Distance算法(编辑距离算法)

    编辑距离 编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符, ...

  9. 编辑距离——Edit Distance

    编辑距离 在计算机科学中,编辑距离是一种量化两个字符串差异程度的方法,也就是计算从一个字符串转换成另外一个字符串所需要的最少操作步骤.不同的编辑距离中定义了不同操作的集合.比较常用的莱温斯坦距离(Le ...

随机推荐

  1. topcoder srm 551

    div1 250pt 题意:一个长度最多50的字符串,每次操作可以交换相邻的两个字符,问,经过最多MaxSwaps次交换之后,最多能让多少个相同的字符连起来 解法:对于每种字符,枚举一个“集结点”,让 ...

  2. Visual Studio VS如何拷贝一个项目的窗体文件到另一个项目

    1 比如下我有一个项目,我要把这个Config整个窗体和代码拷贝到另一个项目   2 在新项目中添加现有项,然后把这个窗体相关的三个文件都添加到新的项目中   3 然后在新窗体中就什么都有了     ...

  3. 深入浅出Redis(二)高级特性:事务

    第一篇中介绍了Redis是一个强大的键-值仓储,支持五种灵活的数据结构.其实,Redis还支持其他的一些高级特性:事务.公布与订阅.管道.脚本等,本篇我们来看一下事务. 前一篇中我们提到,在Redis ...

  4. Deepin-安装git

    sudo apt-get install git 命令介绍(安装软件):apt-get install 命令介绍(Debian系列以管理员运行的前缀):sudo

  5. Android Activity与远程Service的通信学习总结

    当一个Service在androidManifest中被声明为 process=":remote", 或者是还有一个应用程序中的Service时,即为远程Service, 远程的意 ...

  6. centos+nginx+php-fpm+php include fastcgi_params php页面能訪问但空白,被fastcgi_params与fastcgi.conf害慘了

    今天在centos上折腾这块是发现老是訪问页面时,浏览器中提示是200 ok.且訪问html后缀却是正常出现内容. 可是訪问php后缀却返回空白页面,同一时候查看全部的log没有发现不论什么出错信息; ...

  7. 鸟哥的Linux私房菜-----12、学习使用Shell scripts

  8. mysql10---索引优化

    D:\MYSQL\mysql-winx64\data\WIN-20171216YUR-slow.log是慢日志: ; ; # Time: :.472000Z # # Query_time: Rows_ ...

  9. POJ2533 Longest Ordered Subsequence —— DP 最长上升子序列(LIS)

    题目链接:http://poj.org/problem?id=2533 Longest Ordered Subsequence Time Limit: 2000MS   Memory Limit: 6 ...

  10. 本地锁、redis分布式锁、zk分布式锁

    本地锁.redis分布式锁.zk分布式锁 https://www.cnblogs.com/yjq-code/p/dotnetlock.html 为什么要用锁? 大型站点在高并发的情况下,为了保持数据最 ...