tyvj2054 四叶草魔杖——连通块 & 状压DP
题目:http://www.joyoi.cn/problem/tyvj-2054
把点分成几个连通块,和为0的几个点放在一块,在块内跑最小生成树作为这个块的代价;
然后状压DP,组成全集的最小代价就是答案;
1A了好高兴!
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n,m,a[],hd[],ct,f[<<],cnt,fa[],inf=0x3f3f3f3f,g[<<],tot;
bool vis[];
struct N{
int u,v,w;
N(int t=,int n=,int w=):u(t),v(n),w(w) {}
}e[];
bool cmp(N x,N y){return x.w<y.w;}
int calc(int g)
{
int sum=;
for(int i=;i<=n;i++) if(g&(<<(i-)))sum+=a[i];
return sum;
}
int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
int kruskal(int g)
{
int num=,ret=;
memset(vis,,sizeof vis);
for(int i=;i<=n;i++)
{
fa[i]=i;
if(g&(<<(i-)))vis[i]=,num++;
}
int t=;
for(int i=;i<=m;i++)
{
if(!vis[e[i].u]||!vis[e[i].v])continue;
int u=find(e[i].u),v=find(e[i].v);
if(u!=v)
{
fa[u]=v; ret+=e[i].w; t++;
if(t==num-)break;
}
}
if(t!=num-)return inf;
return ret;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)scanf("%d",&a[i]);
for(int i=;i<=m;i++) scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].w),e[i].u++,e[i].v++;
sort(e+,e+m+,cmp);
memset(f,0x3f,sizeof f);
for(int i=;i<=(<<n)-;i++)
if(calc(i)==)
{
int ff=kruskal(i);
if(ff!=inf)g[++tot]=i,f[i]=ff;
}
f[]=;
for(int i=;i<=(<<n)-;i++)
{
for(int j=;j<=tot;j++)
if((i&g[j])==)f[i|g[j]]=min(f[i|g[j]],f[i]+f[g[j]]);
}
if(f[(<<n)-]==inf)printf("Impossible\n");
else printf("%d\n",f[(<<n)-]);
return ;
}
tyvj2054 四叶草魔杖——连通块 & 状压DP的更多相关文章
- [tyvj2054] 四叶草魔杖 (最小生成树 状压dp)
传送门 Background 陶醉在彩虹光芒笼罩的美景之中,探险队员们不知不觉已经穿过了七色虹,到达了目的地,面前出现了一座城堡和小溪田园,城堡前的木牌上写着"Poetic Island&q ...
- BZOJ_3058_四叶草魔杖_kruscal+状压DP
BZOJ_3058_四叶草魔杖_kruscal+状压DP Description 魔杖护法Freda融合了四件武器,于是魔杖顶端缓缓地生出了一棵四叶草,四片叶子幻发着淡淡的七色光.圣剑护法rainbo ...
- tyvj 2054 [Nescafé29]四叶草魔杖——最小生成树+状压dp
题目:http://www.joyoi.cn/problem/tyvj-2054 枚举点集,如果其和为0,则作为一个独立的块求一下最小生成树.因为它可以不和别的块连边. 然后状压dp即可. 别忘了判断 ...
- BZOJ.3058.四叶草魔杖(Kruskal 状压DP)
题目链接 \(2^{16}=65536\),可以想到状压DP.但是又有\(\sum A_i\neq 0\)的问题.. 但是\(2^n\)这么小,完全可以枚举所有子集找到\(\sum A_i=0\)的, ...
- HDU 5765 Bonds(状压DP)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5765 [题目大意] 给出一张图,求每条边在所有边割集中出现的次数. [题解] 利用状压DP,计算不 ...
- 【XSY2524】唯一神 状压DP 矩阵快速幂 FFT
题目大意 给你一个网格,每个格子有概率是\(1\)或是\(0\).告诉你每个点是\(0\)的概率,求\(1\)的连通块个数\(\bmod d=0\)的概率. 最开始所有格子的概率相等.有\(q\)次修 ...
- 【uoj#37/bzoj3812】[清华集训2014]主旋律 状压dp+容斥原理
题目描述 求一张有向图的强连通生成子图的数目对 $10^9+7$ 取模的结果. 题解 状压dp+容斥原理 设 $f[i]$ 表示点集 $i$ 强连通生成子图的数目,容易想到使用总方案数 $2^{sum ...
- 【bzoj2560】串珠子 状压dp+容斥原理
题目描述 有 $n$ 个点,点 $i$ 和点 $j$ 之间可以连 $0\sim c_{i,j}$ 条无向边.求连成一张无向连通图的方案数模 $10^9+7$ .两个方案不同,当且仅当:存在点对 $(i ...
- 【bzoj4006】[JLOI2015]管道连接 斯坦纳树+状压dp
题目描述 给出一张 $n$ 个点 $m$ 条边的无向图和 $p$ 个特殊点,每个特殊点有一个颜色.要求选出若干条边,使得颜色相同的特殊点在同一个连通块内.输出最小边权和. 输入 第一行包含三个整数 n ...
随机推荐
- ThinkPHP---thinkphp文件加载
[一]文件加载在ThinkPHP里提供了三种方式 实际开发里,文件加载方式一般以第一种为主(通过函数库形式自动加载,此时我们仅仅需要定义文件和函数) (1)函数库形式加载 函数库分3种级别,系统函数库 ...
- linux shell学习笔记二---自定义函数(定义、返回值、变量作用域)介绍
linux shell 可以用户定义函数,然后在shell脚本中可以随便调用.下面说说它的定义方法,以及调用需要注意那些事项. 一.定义shell函数(define function) 语法: [ f ...
- 操作Session存储对象时的一些问题
前段时间在操作Session存储的对象时,遇到了类似以下的这种情况: User user=new User("张三"); //创建一个姓名为“张三”的User对象 Session[ ...
- [Algorithm] 11. Linked List Cycle
Description Given a linked list, determine if it has a cycle in it. To represent a cycle in the give ...
- Linux---shell基本指令
1. 显示当前目录 pwd wangzhengchao@ubuntu:~$ cd /home/wangzhengchao/Desktop/ wangzhengchao@ubuntu:~/Desktop ...
- chrome浏览器安装网页测试插件postman的图文介绍
用户在开发或者调试网络程序或者是网页B/S模式的程序的时候是需要一些方法来跟踪网页请求的,用户可以使用一些网络的监视工具比如著名的Firebug等网页调试工具.今天给大家介绍的这款网页调试工具不仅可以 ...
- CF441D
题目大意 给出一个有n个数的序列 求符合 区间各数或起来的数大于区间最大数 的区间的个数 题解 预处理出每个数每一位是0的那位左边最近的1和右边最近的1,用单调栈找出每个最大值所在的区间的左右端点,统 ...
- vs2017 添加引用时 未能完成操作。不支持此接口
打开vs2017开发者命令提示符 切换至安装下的指定目录 执行下面的命令就可以了 需要注意的是一定要用vs2017的开发人员命令提示符 别用cmd gacutil -i Microsoft.V ...
- mongo实践-透过js shell操作mongo
mongo实践-通过js shell操作mongo 保存命令: j={name:"wangjingjing",age:15} db.user.save(j); 查询命令: var ...
- CodeForces 362C
分析:首先我们要知道调用swap()函数的次数跟什么有关.可以观察发现在Insertion Sort里,当且仅当a[j](j∈[0,i)) > a[i]时会调用一次swap(),也就是说有多少个 ...