题目描述

N个人坐成一圈玩游戏。一开始我们把所有玩家按顺时针从1到N编号。首先第一回合是玩家1作为庄家。每个回合庄家都会随机(即按相等的概率)从卡牌堆里选择一张卡片,假设卡片上的数字为X,则庄家首先把卡片上的数字向所有玩家展示,然后按顺时针从庄家位置数第X个人将被处决即退出游戏。然后卡片将会被放回卡牌堆里并重新洗牌。被处决的人按顺时针的下一个人将会作为下一轮的庄家。那么经过N-1轮后最后只会剩下一个人,即为本次游戏的胜者。现在你预先知道了总共有M张卡片,也知道每张卡片上的数字。现在你需要确定每个玩家胜出的概率。

这里有一个简单的例子:

例如一共有4个玩家,有四张卡片分别写着3,4,5,6.

第一回合,庄家是玩家1,假设他选择了一张写着数字5的卡片。那么按顺时针数1,2,3,4,1,最后玩家1被踢出游戏。

第二回合,庄家就是玩家1的下一个人,即玩家2.假设玩家2这次选择了一张数字6,那么2,3,4,2,3,4,玩家4被踢出游戏。

第三回合,玩家2再一次成为庄家。如果这一次玩家2再次选了6,则玩家3被踢出游戏,最后的胜者就是玩家2.

输入输出格式

输入格式:

第一行包括两个整数N,M分别表示玩家个数和卡牌总数。

接下来一行是包含M个整数,分别给出每张卡片上写的数字。

输出格式:

输出一行包含N个百分比形式给出的实数,四舍五入到两位小数。分别给出从玩家1到玩家N的胜出概率,每个概率之间用空格隔开,最后不要有空格。

输入输出样例

输入样例#1:

输入样例1:

5 5

2 3 5 7 11

输入样例2:

4 4

3 4 5 6

输出样例#1:

输出样例1:

22.72% 17.12% 15.36% 25.44% 19.36%

输出样例2:

25.00% 25.00% 25.00% 25.00%

说明

对于30%的数据,有1<=N<=10

对于50%的数据,有1<=N<=30

对于100%的数据,有1<=N<=50 1<=M<=50 1<=每张卡片上的数字<=50

【题解】

此题为概率DP。

有一个很重要的性质:当前人获胜的概率只与其在排列中与庄家的相对位置和人数有关,跟具体有哪些人无关。

那么我们可以用f[i][j]表示还有i人时从庄家开始数第j个人获胜的概率。

于是可以枚举当前每种可能然后从f[i-1][*]转移,这就可以写成一个DP了。

#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<vector>
#define ll long long
#define re register
#define il inline
#define fp(i,a,b) for(re int i=a;i<=b;i++)
#define fq(i,a,b) for(re int i=a;i>=b;i--)
using namespace std;
double f[55][55]={};
int n,m,i,j,k,w,a[55]={};
il int gi()//读入优化
{
re int x=0;
re short int t=1;
re char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if(ch=='-') t=-1,ch=getchar();
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*t;
}
int main()
{
n=gi();m=gi();
fp(i,1,m) a[i]=gi();
f[1][1]=1;//只有一个人时即胜利
fp(i,2,n)//剩下i人
fp(j,1,n)//当前是j的庄家
fp(k,1,m)//枚举牌数
{
w=a[k]%i;
if(w==0) w=i;
if(w>j) f[i][j]+=f[i-1][i-w+j]/m;
if(w<j) f[i][j]+=f[i-1][j-w]/m;
}
fp(i,1,n) printf("%.2lf%% ",f[n][i]*100.0);//输出%要打两个%。。。
return 0;
}

洛谷P2059 [JLOI2013]卡牌游戏的更多相关文章

  1. 洛谷 P2059 [JLOI2013]卡牌游戏 解题报告

    P2059 [JLOI2013]卡牌游戏 题意 有\(n\)个人玩约瑟夫游戏,有\(m\)张卡,每张卡上有一个正整数,每次庄家有放回的抽一张卡,干掉从庄家起顺时针的第\(k\)个人(计算庄家),干掉的 ...

  2. 洛谷 P2059 [JLOI2013]卡牌游戏(概率dp)

    题面 洛谷 题解 \(f[i][j]\)表示有i个人参与游戏,从庄家(即1)数j个人获胜的概率是多少 \(f[1][1] = 1\) 这样就可以不用讨论淘汰了哪些人和顺序 枚举选庄家选那张牌, 枚举下 ...

  3. BZOJ3191或洛谷2059 [JLOI2013]卡牌游戏

    BZOJ原题链接 洛谷原题链接 我们可以倒着来\(DP\). 设\(f[i][j]\)表示剩余\(i\)个人,从庄家数起第\(j\)个人的胜率,设当前枚举到第\(k\)张牌,该情况下这一轮淘汰的位置为 ...

  4. P2059 [JLOI2013]卡牌游戏

    题目描述 N个人坐成一圈玩游戏.一开始我们把所有玩家按顺时针从1到N编号.首先第一回合是玩家1作为庄家.每个回合庄家都会随机(即按相等的概率)从卡牌堆里选择一张卡片,假设卡片上的数字为X,则庄家首先把 ...

  5. P2059 [JLOI2013]卡牌游戏 概率DP

    link:https://www.luogu.org/problemnew/show/P2059 题意: 有n个人,类似约瑟夫环的形式踢人,但是报的数是不同的,是在给定的许多数中随机抽取,问最后第i个 ...

  6. Luogu P2059 [JLOI2013]卡牌游戏

    一道比较简单的概率DP 首先看到这种题目和数据范围,就要毫不犹豫地列DP方程: 我们令\(f_{i,j}\)表示还剩下i个人时编号为j的人的胜率,那么首先我们可以知道边界条件\(f_{1,1}=1\) ...

  7. BZOJ_3191_[JLOI2013]卡牌游戏_概率DP

    BZOJ_3191_[JLOI2013]卡牌游戏_概率DP Description   N个人坐成一圈玩游戏.一开始我们把所有玩家按顺时针从1到N编号.首先第一回合是玩家1作为庄家.每个回合庄家都会随 ...

  8. bzoj千题计划202:bzoj3191: [JLOI2013]卡牌游戏

    http://www.lydsy.com/JudgeOnline/problem.php?id=3191 每个人获胜的概率只与其在排列中与庄家的相对位置有关 dp[i][j] 还剩i个人时,从庄家数第 ...

  9. [JLOI2013]卡牌游戏 概率DP

    [JLOI2013]卡牌游戏 概率DP 题面 \(dfs\)复杂度爆炸,考虑DP.发现决策时,我们只用关心当前玩家是从庄家数第几个玩家与当前抽到的牌是啥.于是设计状态\(f[i][j]\)表示有\(i ...

随机推荐

  1. Android开发使用控件入门--环境搭建

    Android开发使用控件入门--环境搭建 软件名称(,梦,,想.CAD  ,控件) 1. 环境搭建: 3 1.1. 安装Eclipse 3 1.2. 下载JDK 3 1.3. 下载Android S ...

  2. QuickClip—界面原型设计

    1.需不需要设置用户登录/注册页? QuickClip没有提供该项功能.因为本产品为单纯的移动端视频编辑软件,是一个工具类软件.而且移动端软件本就追求的是方便快捷.简单易用,本产品不需要标识使用者的身 ...

  3. Spring框架系列(五)--面向切面AOP

    背景: 当需要为多个不具有继承关系的对象引入一个公共行为,例如日志.权限验证.事务等功能时,如果使用OOP,需要为每个对象引入这些公共 行为.会产生大量重复代码,并且不利用维护.AOP就是为了解决这个 ...

  4. 「 Luogu P2230 」X 「 Vijos 1142 」 HXOS系统

    题目描述可能稍有偏差,但实质上是一样的. 看下面 题目大意 题面这么长,先说说题意吧. 就是有一个操作系统,他的存储方式是树形的.其中分为文件和目录(文件夹)每一个子目录下只能存储 $K$ 个文件或目 ...

  5. [模拟赛FJOI Easy Round #2][T1 sign] (模拟+求字符串重复字串)

    [题目描述] 小Z在无意中发现了一个神奇的OJ,这个OJ有一个神奇的功能:每日签到,并且会通过某种玄学的算法计算出今日的运势.在多次试验之后,小Z发现自己的运势按照一定的周期循环,现在他找到了你,请通 ...

  6. 调试LM1117电压转换芯片

    LM1117(不是LM117)电源芯片是低压差线性稳压器,简称LDO(low dropout regulator),是一种非隔离(输入输出电压的地是一个地)的电压转换芯片.因此,在使用的时候,尽量让输 ...

  7. 【03】AngularJS 简介

    AngularJS 简介 AngularJS 是一个 JavaScript 框架.它可通过 <script> 标签添加到 HTML 页面. AngularJS 通过 指令 扩展了 HTML ...

  8. 【Codeforces 442B】Andrey and Problem

    [链接] 我是链接,点我呀:) [题意] n个朋友 第i个朋友帮你的概率是pi 现在问你恰好有一个朋友帮你的概率最大是多少 前提是你可以选择只问其中的某些朋友不用全问. [题解] 主要思路是逆向思维, ...

  9. cocos2dx 2.1.x 退出SDK相关界面后EGLView 不刷新渲染

    报错内容为: [3390:1456879] failed to call contextcocos2d: surface size: 0x0[3390:1456879] Failed to make ...

  10. 模拟select控件功能

    直接上代码 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF ...