题目链接:

Intersection

Time Limit: 4000/4000 MS (Java/Others)    

Memory Limit: 512000/512000 K (Java/Others)

Problem Description
 
Matt is a big fan of logo design. Recently he falls in love with logo made up by rings. The following figures are some famous examples you may know.


A ring is a 2-D figure bounded by two circles sharing the common center. The radius for these circles are denoted by r and R (r < R). For more details, refer to the gray part in the illustration below.


Matt just designed a new logo consisting of two rings with the same size in the 2-D plane. For his interests, Matt would like to know the area of the intersection of these two rings.

 
Input
 
The first line contains only one integer T (T ≤ 105), which indicates the number of test cases. For each test case, the first line contains two integers r, R (0 ≤ r < R ≤ 10).

Each of the following two lines contains two integers xi, yi (0 ≤ xi, yi ≤ 20) indicating the coordinates of the center of each ring.

 
Output
 
For each test case, output a single line “Case #x: y”, where x is the case number (starting from 1) and y is the area of intersection rounded to 6 decimal places.
 
Sample Input
 
2
2 3
0 0
0 0
2 3
0 0
5 0
 
Sample Output
 
Case #1: 15.707963
Case #2: 2.250778
 
题意
 
求两个圆环相交的面积;
 
思路
 
ans=两个大圆的面积交+两个小圆的面积交-2*大圆与小圆的面积交;
 
AC代码
 
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N=1e5+;
const LL mod=1e9+;
const double PI=acos(-1.0);
double fun(double x,double y,double fx,double fy,double r,double R)
{
double dis=sqrt((x-fx)*(x-fx)+(y-fy)*(y-fy));
//cout<<dis<<endl;
if(dis>=r+R)return ;
else if(dis<=R-r)
{
return PI*r*r;
}
else
{
double angle1,angle2,s1,s2,s3,s;
angle1=acos((r*r+dis*dis-R*R)/(*r*dis));
angle2=acos((R*R+dis*dis-r*r)/(*R*dis)); s1=angle1*r*r;s2=angle2*R*R;
s3=r*dis*sin(angle1);
s=s1+s2-s3;
return s;
}
}
int main()
{
int t;
scanf("%d",&t);
double r,R,x,y,fx,fy;
int cnt=;
while(t--)
{ scanf("%lf%lf",&r,&R);
scanf("%lf%lf%lf%lf",&x,&y,&fx,&fy);
double ans1,ans2,ans3,ans4;
ans1=fun(x,y,fx,fy,R,R);
ans2=fun(x,y,fx,fy,r,r);
ans3=fun(x,y,fx,fy,r,R);
ans4=fun(fx,fy,x,y,r,R);
printf("Case #%d: ",cnt++);
printf("%.6lf\n",ans1+ans2-ans3-ans4);
} }

hdu-5120 Intersection(计算几何)的更多相关文章

  1. HDU 5120 Intersection(2014北京赛区现场赛I题 计算几何)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5120 解题报告:给你两个完全相同的圆环,要你求这两个圆环相交的部分面积是多少? 题意看了好久没懂.圆环 ...

  2. 计算几何(容斥原理,圆交):HDU 5120 Intersection

    Matt is a big fan of logo design. Recently he falls in love with logo made up by rings. The followin ...

  3. hdu 5120 Intersection

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5120 A ring is a 2-D figure bounded by two circles sh ...

  4. hdu 5120 Intersection 圆环面积交

    Intersection Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5 ...

  5. hdu 5120 Intersection 两个圆的面积交

    Intersection Time Limit: 4000/4000 MS (Java/Others)    Memory Limit: 512000/512000 K (Java/Others) P ...

  6. hdu 5120 Intersection (圆环面积相交->圆面积相交)

    Problem Description Matt is a big fan of logo design. Recently he falls in love with logo made up by ...

  7. HDU 5120 Intersection(几何模板题)

    题意:给定两个圆环,求两个圆环相交的面积. 思路:由于圆心和半径不一样,分了好多种情况,后来发现只要把两个圆相交的函数写好之后就不需要那么复杂了.两个圆相交的面积的模板如下: double area_ ...

  8. HDU 5120 Intersection (圆的面积交)

    题意:给定两个圆环,求两个圆环的面积交. 析:很容易知道,圆环面积交就是,大圆与大圆面积交 - 大圆和小圆面积交 - 小圆和大圆面积交 + 小圆和小圆面积交. 代码如下: #pragma commen ...

  9. HDU 4998 Rotate (计算几何)

    HDU 4998 Rotate (计算几何) 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4998 Description Noting is more ...

  10. hdu 4643 GSM 计算几何 - 点线关系

    /* hdu 4643 GSM 计算几何 - 点线关系 N个城市,任意两个城市之间都有沿他们之间直线的铁路 M个基站 问从城市A到城市B需要切换几次基站 当从基站a切换到基站b时,切换的地点就是ab的 ...

随机推荐

  1. Python入门--8--现在需要先学习可视化--包:easygui

    一.安装.了解easygui 下载地址:http://bbs.fishc.com/forum.php?mod=viewthread&tid=46069&extra=page%3D1%2 ...

  2. 2017 ACM/ICPC Asia Regional Qingdao Online 记录

    题目链接  Qingdao Problem C AC自动机还不会,暂时暴力水过. #include <bits/stdc++.h> using namespace std; #define ...

  3. 51 NOD 1383 整数分解为2的幂

    设f[i]为i这个数的划分方案,则: 1.i是奇数的时候,最前面只能放1,所以f[i] = f[i-1] 2.i是偶数的时候,最前面可以放1也可以不放1,而不放1的时候数列都是偶数所以 f[i] = ...

  4. JDBC 数据库连接 Java操作数据库 jdbc快速入门

    JDBC基本概念 Java DataBase Connectivity 数据库连接 java操作数据库 本质上(sun公司的程序员)定义的一套操作关系型数据库的规则 既接口  更新内容之前 代码 pa ...

  5. NIO与传统IO的区别(形象比喻)[转]

    传统的socket IO中,需要为每个连接创建一个线程,当并发的连接数量非常巨大时,线程所占用的栈内存和CPU线程切换的开销将非常巨大.使用NIO,不再需要为每个线程创建单独的线程,可以用一个含有限数 ...

  6. ios 使用keychain来存储token

    注意事项: 1.>On iPhone, Keychain rights depend on the provisioning profile used to sign your applicat ...

  7. IT部门的KPI该如何制定?

    导语:信息化成本.系统开机率.网路不断线时数.系统运行速度.软件开发时间.用户问题处理反应时间.系统品质.用户满意度--哪些指标是可被管理的,能指引IT部门成为一个有价值的.为企业带来效益的部门呢? ...

  8. OSX: diskutil命令-转换成自由空间并再对其分区

    声明:本文涉及的操作非常可能会破坏你的系统文件,造成数据丢失.请谨慎模仿,一切后果作者均不承担不论什么责任. 目的: 尽管说比較熟悉diskutil命令和它的GUI前端程序磁盘工具(Disk Util ...

  9. BUPT 2012复试机考 2T

    题目描述 ​给你一个n*n的矩阵, , 求其矩阵的k次幂,即Pk 输入格式 第一行,一个整数T(0<T<=10),表示要求矩阵的个数. 接下来有T组数据,每组数据格式如下: 第一行:两个数 ...

  10. HDU 2845 Beans (两次线性dp)

    Beans Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Subm ...