题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3143

只需算出每条边被经过的概率,将概率从小到大排序,从大到小编号,就可得到最小期望;

每条边经过的概率是其两端的点被走的次数/该点的度数的和;

而每个点被走的次数又需要从与其相连的点推过来,所以构成n个n元方程,进行高斯消元求解;

其中点n较为特殊,可以不去管它,因为所有路径到n后就不再走出来,也就是n到n的概率为0;

而因为所有路径从点1开始,所以1的次数平地+1。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
int const M=*;
int n,m,u[M],v[M],d[];
double a[][],ans,x[],w[M];
void gauss()
{
for(int i=;i<n;i++)
{
int k=i;
for(int j=i+;j<n;j++)
if(fabs(a[j][i])>fabs(a[k][i]))k=j;//fabs
if(k!=i)
for(int l=i;l<=n+;l++)swap(a[k][l],a[i][l]);
for(int l=i+;l<n;l++)
{
double r=a[l][i]/a[i][i];//不是k!!!
for(int t=i;t<=n+;t++)
a[l][t]-=r*a[i][t];
}
}
x[n]=;//!!!
for(int i=n-;i;i--)
{
for(int j=i+;j<n;j++)a[i][n+]-=a[i][j]*x[j];
x[i]=a[i][n+]/a[i][i];
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
{
scanf("%d%d",&u[i],&v[i]);
d[u[i]]++;d[v[i]]++;
}
for(int i=;i<=m;i++)
{
a[u[i]][v[i]]+=1.0/d[v[i]];
a[v[i]][u[i]]+=1.0/d[u[i]];
}
for(int i=;i<n;i++)a[i][i]=-;
a[][n+]=-;
gauss();
// for(int i=1;i<=n;i++)
// printf("x[%d]=%.3lf\n",i,x[i]);
for(int i=;i<=m;i++)
w[i]=x[u[i]]/d[u[i]]+x[v[i]]/d[v[i]];
sort(w+,w+m+);
for(int i=;i<=m;i++)
ans+=(m-i+)*w[i];
printf("%.3lf",ans);
return ;
}

bzoj3143游走——期望+高斯消元的更多相关文章

  1. [BZOJ3143][HNOI2013]游走(期望+高斯消元)

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3576  Solved: 1608[Submit][Status ...

  2. 【BZOJ】3143: [Hnoi2013]游走 期望+高斯消元

    [题意]给定n个点m条边的无向连通图,每条路径的代价是其编号大小,每个点等概率往周围走,要求给所有边编号,使得从1到n的期望总分最小(求该总分).n<=500. [算法]期望+高斯消元 [题解] ...

  3. [HNOI2013]游走 期望+高斯消元

    纪念首道期望题(虽说绿豆蛙的归宿才是,但是我打的深搜总觉得不正规). 我们求出每条边的期望经过次数,然后排序,经过多的序号小,经过少的序号大,这样就可以保证最后的值最小. 对于每一条边的期望经过次数, ...

  4. 【BZOJ 3143】【Hnoi2013】游走 期望+高斯消元

    如果纯模拟,就会死循环,而随着循环每个点的期望会逼近一个值,高斯消元就通过列方正组求出这个值. #include<cstdio> #include<cctype> #inclu ...

  5. 【BZOJ3143】游走(高斯消元,数学期望)

    [BZOJ3143]游走(高斯消元,数学期望) 题面 BZOJ 题解 首先,概率不会直接算... 所以来一个逼近法算概率 这样就可以求出每一条边的概率 随着走的步数的增多,答案越接近 (我卡到\(50 ...

  6. BZOJ3143 [Hnoi2013]游走 【高斯消元】

    题目 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编 ...

  7. [luogu3232 HNOI2013] 游走 (高斯消元 期望)

    传送门 题目描述 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等 ...

  8. LOJ 2542 「PKUWC2018」随机游走 ——树上高斯消元(期望DP)+最值反演+fmt

    题目:https://loj.ac/problem/2542 可以最值反演.注意 min 不是独立地算从根走到每个点的最小值,在点集里取 min ,而是整体来看,“从根开始走到点集中的任意一个点就停下 ...

  9. 洛谷P3232 [HNOI2013]游走(高斯消元+期望)

    传送门 所以说我讨厌数学……期望不会高斯消元也不会……好不容易抄好了高斯消元板子被精度卡成琪露诺了…… 首先,我们先算出走每一条边的期望次数,那么为了最小化期望,就让大的期望次数乘上小编号 边的期望次 ...

随机推荐

  1. ROS安装环境配置及多版本的切换

    环境配置: 为方便起见,我们可以在每次打开终端时让系统自动配置好ROS环境变量,方法如下: echo "source /opt/ros/hydro/setup.bash" > ...

  2. Java面试题总结之数据结构、算法和计算机基础(刘小牛和丝音的爱情故事1)

      Java面试题总结之数据结构.算法和计算机基础(刘小牛和丝音的爱情故事1)​mp.weixin.qq.com 全文字数: 1703 阅读时间: 大约6 分钟 刘小牛是一名Java程序员,由于天天9 ...

  3. Maven项目配置外部依赖(本地依赖)

    加入有一些公共jar包只限于公司内部使用,不能暴露在外部时,有如下的方案: 1.搭建私有远程仓库(nexus) 2.使用http.ftp.共享地址,github地址等(主要是通过maven-deplo ...

  4. RED HAT 7 性能监控工具

    https://access.redhat.com/documentation/zh-CN/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Gui ...

  5. 使用CSS去除 去掉超链接的下划线方法

    我们可以用CSS语法来控制超链接的形式.颜色变化,为什么链接一定要使用下划线和颜色区分呢? 其主要原因主要是考虑到   1.视力差的人 2.色盲的人 ... 下面我们做一个这样的链接:未被点击时超链接 ...

  6. People seldom do what they believe in. They do what is convenient, then repent.

    People seldom do what they believe in. They do what is convenient, then repent. 人们很少真正实践他们的理想.他们只做比较 ...

  7. 嵌入式程序员应知道的0x10个C语言Tips

    [1].[代码] [C/C++]代码 跳至 [1] ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 ...

  8. HTML制作练习

  9. Intel的东进与ARM的西征(5)--智慧的大窗口,我们都在画里面

    http://www.36kr.com/p/200168.html 繁华又算得了什么,不过是星尘的崩碎,那一抹青青的灰.公元 79 年,意大利维苏威火山喷发,已然兴盛了 600 年的庞贝古城被完全湮没 ...

  10. Object类及其常用方法简介

    https://www.cnblogs.com/wxywxy/p/6740277.html Object类是一个特殊的类,是所有类的父类,如果一个类没有用extends明确指出继承于某个类,那么它默认 ...