POJ 2154 Color ——Burnside引理
【题目分析】
数据范围有些大。
然后遍求欧拉函数,遍求和就好了,注意取模。
【代码】
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; #define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define maxn 100005
#define inf 0x3f3f3f3f int n,p,x,sum;
int ispr[maxn],pr[maxn],top=0; void init()
{
F(i,2,maxn-1)
if (!ispr[i])
{
pr[++top]=i;
F(j,2,inf)
{
if (j*i>=maxn) break;
ispr[j*i]=1;
}
}
} int qpow(int a,int b)
{
a%=p;
int ret=1;
while (b)
{
if (b&1) (ret*=a)%=p;
(a*=a)%=p;
b>>=1;
}
return ret;
} int phi(int n)
{
int ret=n;
for (int i=1;pr[i]*pr[i]<=n&&i<=top;++i)
if (n%pr[i]==0)
{
ret=ret-ret/pr[i];
while (n%pr[i]==0) n/=pr[i];
}
if (n>1) ret=ret-ret/n;
return ret%p;
} int main()
{
init();
// F(i,1,top) printf("%d ",pr[i]); printf("\n");
scanf("%d",&x);
while (x--)
{
sum=0;
scanf("%d%d",&n,&p);
for (int i=1;i*i<=n;++i)
{
if (n%i==0)
{
sum=(sum+(qpow(n,i-1)*phi(n/i))%p)%p;
if (i*i!=n) sum=(sum+(qpow(n,n/i-1)*phi(i))%p)%p;
}
}
printf("%d\n",sum);
}
}
POJ 2154 Color ——Burnside引理的更多相关文章
- 组合数学 - 波利亚定理 --- poj : 2154 Color
Color Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7873 Accepted: 2565 Description ...
- poj 2154 Color——带优化的置换
题目:http://poj.org/problem?id=2154 置换的第二道题! 需要优化!式子是ans=∑n^gcd(i,n)/n (i∈1~n),可以枚举gcd=g,则有phi( n/g )个 ...
- poj 2154 Color < 组合数学+数论>
链接:http://poj.org/problem?id=2154 题意:给出两个整数 N 和 P,表示 N 个珠子,N种颜色,要求不同的项链数, 结果 %p ~ 思路: 利用polya定理解~定理内 ...
- [ACM] POJ 2154 Color (Polya计数优化,欧拉函数)
Color Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7630 Accepted: 2507 Description ...
- poj 2154 Color(polya计数 + 欧拉函数优化)
http://poj.org/problem?id=2154 大致题意:由n个珠子,n种颜色,组成一个项链.要求不同的项链数目.旋转后一样的属于同一种.结果模p. n个珠子应该有n种旋转置换.每种置换 ...
- poj 2154 Color
这是道标准的数论优化的polya题.卡时卡的很紧,需要用int才能过.程序中一定要注意控制不爆int!!!我因为爆intWA了好久=_=…… 题目简洁明了,就是求 sigma n^gcd(i,n):但 ...
- POJ 2154 Color [Polya 数论]
和上题一样,只考虑旋转等价,只不过颜色和珠子$1e9$ 一样的式子 $\sum\limits_{i=1}^n m^{gcd(i,n)}$ 然后按$gcd$分类,枚举$n$的约数 如果这个也化不出来我莫 ...
- POJ 2154 color (polya + 欧拉优化)
Beads of N colors are connected together into a circular necklace of N beads (N<=1000000000). You ...
- poj 2154 Color 欧拉函数优化的ploya计数
枚举位移肯定超时,对于一个位移i.我们须要的是它的循环个数,也就是gcd(i,n),gcd(i,n)个数肯定不会非常多,由于等价于n的约数的个数. 所以我们枚举n的约数.对于一个约数k,也就是循环个数 ...
随机推荐
- (九)maven之聚合多模块
聚合项目 一些开源项目,都会把自己的源代码公开到github之类的网站上,我们通过下载其代码,在本地执行maven install,可以把代码编译成jar包安装到本地仓库.而一个项目通常有多个模块,比 ...
- root.sh脚本支持checkpoints文件实现重复运行
安装集群GRID/GI一般包括三个过程:首先,运行OUI/RunInstaller输入集群配置信息,其次,拷贝/编译集群文件,最后,以root用户运行root.sh脚本配置集群/启动集群,其中运行ro ...
- Bootstrap-datepicker设置开始时间结束时间范围
$('.form_datetime').datepicker({ format: 'yyyy-mm-dd', weekStart: 1, startDate: '+1', endD ...
- 解决IIS7多域名绑定同一物理目录,设置不同的默认文档的问题
IIS7多域名绑定同一物理目录,设置不同的默认文档是没办法设置的,因为在一个物理目录下只有一个web.config,并且IIS7把默认文档设置写在这里,导致所有域名的默认文档设置共享.解决方法:1.进 ...
- Java获取字符串里面的重复字符
public static void main(String[] args) { String word="天地玄黄宇宙洪荒" + "日月盈昃辰宿列张" + & ...
- ios之UIToolBar
toolbar除了可以和navigationController一起用之外,也可以独立用到view里.工具栏UIToolbar – 一般显示在底部,用于提供一组选项,让用户执行一些功能,而并非用于在完 ...
- 牛客网NOIP赛前集训营-提高组(第三场)A 管道维修
https://www.nowcoder.com/acm/contest/174/A 这个的话 一个位置被清理的时间就是它到空白格子/边界的最短路对吧qww 然后求期望的话 假设它在第i步被清理掉的 ...
- docker系列之安装配置-2
1.docker安装 1.CentOS Docker 安装 Docker支持以下的CentOS版本: CentOS 7 (64-bit) CentOS 6.5 (64-bit) 或更高的版本 目前,C ...
- node.js----服务器http
请求网址过程: 1.用户通过浏览器发送一个http的请求到指定的主机 2.服务器接收到该请求,对该请求进行分析和处理 3.服务器处理完成以后,返回对应的数据到用户机器 4.浏览器接收服务器返回的数据, ...
- 关于ajax在微信智能客服管理端的使用
ajax的语法样例: $.ajax({ 'url':url, 'type':'GET', 'dataType':'json', 'data':data, success:function (data) ...