洛谷 P4719 【模板】动态dp【动态dp】
是动态dp的板子
大致思想就是用g[u]来表示不包含重链转移的dp值,然后用线段树维护重链,这样线段树的根就相当于这条重链的top的真实dp值
每次修改的时候,修改x点会影响到x到根的真实dp值,但是只会影响到每条重链的低端点的dp值,相当于在log个线段树上单点修改
#include<iostream>
#include<cstdio>
using namespace std;
const int N=200005;
int n,m,a[N],h[N],cnt,de[N],fa[N],si[N],hs[N],fr[N],la[N],id[N],rl[N],tot,f[N][2],g[N][2],rt[N];
struct qwe
{
int ne,to;
}e[N<<1];
struct jz
{
int a[2][2];
jz operator * (const jz &b) const
{
jz c;
c.a[0][0]=c.a[0][1]=c.a[1][0]=c.a[1][1]=0;
for(int i=0;i<2;i++)
for(int j=0;j<2;j++)
for(int k=0;k<2;k++)
c.a[i][j]=max(c.a[i][j],a[i][k]+b.a[k][j]);
return c;
}
};
struct xds
{
int l,r,ls,rs;
jz v;
}t[N<<2];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
h[u]=cnt;
}
void dfs1(int u,int fat)
{
fa[u]=fat;
de[u]=de[fat]+1;
si[u]=1;
for(int i=h[u];i;i=e[i].ne)
if(e[i].to!=fat)
{
dfs1(e[i].to,u);
si[u]+=si[e[i].to];
if(si[e[i].to]>si[hs[u]])
hs[u]=e[i].to;
}
}
void dfs2(int u,int top)
{
fr[u]=top;
la[top]=u;
id[u]=++tot;
rl[tot]=u;
if(!hs[u])
return;
dfs2(hs[u],top);
for(int i=h[u];i;i=e[i].ne)
if(e[i].to!=fa[u]&&e[i].to!=hs[u])
dfs2(e[i].to,e[i].to);
}
void dfs(int u,int fa)
{
f[u][1]=g[u][1]=a[u];
for(int i=h[u];i;i=e[i].ne)
if(e[i].to!=fa)
{
dfs(e[i].to,u);
f[u][0]+=max(f[e[i].to][0],f[e[i].to][1]),f[u][1]+=f[e[i].to][0];
if(e[i].to!=hs[u])
g[u][0]+=max(f[e[i].to][0],f[e[i].to][1]),g[u][1]+=f[e[i].to][0];
}
}
void build(int &ro,int l,int r,int u)
{
ro=++tot;
t[ro].l=l,t[ro].r=r;
if(l==r)
{
t[ro].v.a[0][0]=t[ro].v.a[0][1]=g[rl[id[u]+l-1]][0];
t[ro].v.a[1][0]=g[rl[id[u]+l-1]][1],t[ro].v.a[1][1]=0;
return;
}
int mid=(l+r)>>1;
build(t[ro].ls,l,mid,u);
build(t[ro].rs,mid+1,r,u);
t[ro].v=t[t[ro].ls].v*t[t[ro].rs].v;
}
void update(int ro,int p,int u)
{
if(t[ro].l==t[ro].r)
{
t[ro].v.a[0][0]=t[ro].v.a[0][1]=g[u][0];
t[ro].v.a[1][0]=g[u][1],t[ro].v.a[1][1]=0;
return;
}
int mid=(t[ro].l+t[ro].r)>>1;
if(p<=mid)
update(t[ro].ls,p,u);
else
update(t[ro].rs,p,u);
t[ro].v=t[t[ro].ls].v*t[t[ro].rs].v;
}
void gai(int x,int y)
{
g[x][1]+=y;
while(x)
{
jz a=t[rt[fr[x]]].v,b;
update(rt[fr[x]],de[x]-de[fr[x]]+1,x);
b=t[rt[fr[x]]].v;
x=fa[fr[x]];
g[x][0]+=max(b.a[0][0],b.a[1][0])-max(a.a[0][0],a.a[1][0]);
g[x][1]+=b.a[0][0]-a.a[0][0];
}
}
int main()
{
n=read(),m=read();
for(int i=1;i<=n;i++)
a[i]=read();
for(int i=1;i<n;i++)
{
int x=read(),y=read();
add(x,y),add(y,x);
}
dfs1(1,0);
dfs2(1,1);
dfs(1,0);
tot=0;
for(int i=1;i<=n;i++)
if(i==fr[i])
build(rt[i],1,de[la[i]]-de[i]+1,i);
while(m--)
{
int x=read(),y=read();
gai(x,y-a[x]);
a[x]=y;
printf("%d\n",max(t[rt[1]].v.a[0][0],t[rt[1]].v.a[1][0]));
}
return 0;
}
洛谷 P4719 【模板】动态dp【动态dp】的更多相关文章
- 洛谷P2507 [SCOI2008]配对 题解(dp+贪心)
洛谷P2507 [SCOI2008]配对 题解(dp+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1299251 链接题目地址:洛谷P2507 [S ...
- 洛谷 P3177 [HAOI2015]树上染色 树形DP
洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...
- 洛谷 P4072 [SDOI2016]征途 斜率优化DP
洛谷 P4072 [SDOI2016]征途 斜率优化DP 题目描述 \(Pine\) 开始了从 \(S\) 地到 \(T\) 地的征途. 从\(S\)地到\(T\)地的路可以划分成 \(n\) 段,相 ...
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- 洛谷P4719 【模板】"动态 DP"&动态树分治
[模板]"动态 DP"&动态树分治 第一道动态\(DP\)的题,只会用树剖来做,全局平衡二叉树什么的就以后再学吧 所谓动态\(DP\),就是在原本的\(DP\)求解的问题上 ...
- LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...
- 洛谷P1880 石子合并(区间DP)(环形DP)
To 洛谷.1880 石子合并 题目描述 在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1 ...
- 洛谷P1063 能量项链(区间DP)(环形DP)
To 洛谷.1063 能量项链 题目描述 在Mars星球上,每个Mars人都随身佩带着一串能量项链.在项链上有N颗能量珠.能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数.并且,对于相邻的 ...
- 洛谷P1282 多米诺骨牌 (DP)
洛谷P1282 多米诺骨牌 题目描述 多米诺骨牌有上下2个方块组成,每个方块中有1~6个点.现有排成行的 上方块中点数之和记为S1,下方块中点数之和记为S2,它们的差为|S1-S2|.例如在图8-1中 ...
- 洛谷 P1220 关路灯(区间dp,前缀和)
传送门 解题思路 先明确一下题意,c指的是路灯的编号而不是位置. 然后根据贪心,在从点i去关点j的路灯时,所有经过的路灯都会随手关掉(不耗时间),所以我们可以确定,若i点和j点的路灯已经关闭,那么区间 ...
随机推荐
- vs2015使用Git管理项目
初级 1,在码云上去注册一个帐号(码云的私有库是免费的,安全性怎么样我不知道) 2,在码云上新建一个项目,把相关的开发人员加到这个项目里,会得到这个项目在码云上的远程仓库的地址. 3,打开vs2015 ...
- zoj How Many Shortest Path
How Many Shortest Path 题目: 给出一张图,求解最短路有几条.处理特别BT.还有就是要特别处理map[i][i] = 0,数据有不等于0的情况! 竟然脑残到了些错floyd! ! ...
- 一场由股票提醒助手插件引发的血案——浅入浅出 jquery autocomplete
我没有学过前端,所以这篇文章注定要班门弄斧了. 通常,须要用到什么技术什么语言时,我才去学,学了也不一定掌握,就是记不住!所以如今明确了.学习的时候,亦或是攻克难点的时候,一定要记录下来.并不一定非要 ...
- CSP:使用CryptoAPI解码X509证书内容
微软的CryptoAPI提供了一套解码X509证书的函数,一个X509证书解码之后,得到一个PCCERT_CONTEXT类型的结构体指针. 通过该结构体,我们就能够获取想要的证书项和属性等. X509 ...
- LINQ解决依据某个字段去重
想要List结果反复 的数据非常easy.仅仅要.Dinstinct()就好了 可是假设想要依据某个字段去除反复的数据,上面的方法就帮不上忙了.我们须要重写一个方法.直接上样例吧 [Serializa ...
- JAVA WEB学习笔记(二):Tomcat服务器的安装及配置
一.Tomcat的下载及安装. 前往Tomcat官网下载安装包或者免安装压缩包.链接http://tomcat.apache.org/ 这里,我选择的是Tomcat8.0,而不是最新的Tomcat9. ...
- linux 标准i2c接口(一)
一:I2C设备操作方式: 1. 应用程序操作法:i2c的设备的驱动可以直接利用linux内核提供的i2c-dev.c文件提供的ioctl函数接口在应用层实现对i2c设备的读写,但是在应用层使用ioc ...
- Python中怎样用pip安装外部主机文件
在python中安装非自带python模块.有三种方式: easy_install pip 下载压缩包(.zip, .tar, .tar.gz)后解压, 进入解压缩的文件夹后运行python setu ...
- C语言的一些特殊使用方法————————【Badboy】
一:特殊的字符串宏 [cpp] #define A(x) T_##x #define B(x) #@x #define C(x) #x 我们如果x=1, 则上面的宏定义会被解释成下面的样子 A(1)- ...
- 怎样在QML中利用Sprite来做我们须要的动画
在游戏中动画的设计很中要. 在QML中,它提供了丰富的animation.可是有时我们须要对图像进行变化,就像放电影一样.在今天的这篇文章中,我们将设计一个能够变化图像的动画. 我们能够通过Qt所提供 ...