题意

第一行输入三个整数 \(n,m,d(1 \leq n \leq 2 * 10^5, n \leq m \leq 10^9, 1 \leq d \leq n)\),第二行输入 \(n\) 个整数,保证每个数均不大于 \(m\)。

在每一天你都可以任意选择一个未选过的数 \(a_i\),随后可以继续选任意一个大于 \(a_i + d\) 的数 \(a_j\);接下来可以再选任意一个大于 \(a_j + d\) 的数 \(a_k\);最后重复执行上述步骤。

问:最少需要多少天,可以选完全部的数?

题解

先给结论:先从小到大排序,然后选中剩下的数组的第一个数 \(a_0\),随后选中数组中第一个满足 \(a_i \geq a_0 + d + 1\) 的数 \(a_i\),下一步再选中数组中第一个满足 \(a_j \geq a_i + d\) 的数 \(a_j\),形成的子数组数目便是答案。

疑问解析:为什么优先选择最小的满足 \(a_j \geq a_i + d + 1\)的数是正确的?

答:不妨假设数组排序后为 \(a_0, a_1, ..., a_i, a_j, ..., a_n\),且 \(a_i\) 是最小的满足大于 \(a_0 + d\) 的数。那么明显在选中 \(a_0\) 的下一步,既可以选择 \(a_i\),也可以选择 \(a_j\)。此时若 \(a_j - a_i \leq d\),那明显二者至多只能够选其一,那么无论选择哪一个,都必然意味着需要另外再选择出一个子数组。但如果 \(a_j - a_i \geq d + 1\),就可以先选 \(a_i\) 而后一并选上 \(a_j\)。因此,先选较小者更优。

接下来分析具体代码实现:

如何在数组中找出第一个比选中的数大 \(d\) 以上的数呢?

明显可以线性查找,但是当数组中任意两个数的差值均小于 \(d\) 时,时间复杂度为 \(O(n^2)\),明显不符合要求

观察我们的前置条件排序,所以可以考虑使用二分法来使得查找的时间复杂度降低为 \(O(logn)\)

如何选择过的数从数组中移除呢?

若通过类似插入排序等思路,时间复杂度为 \(O(n^2)\),明显不符合要求

此时思考:既要排序,又要可以二分,还要支持快速删除,我们可以联想到红黑树的性质,但是手撕红黑树太硬核了,可以借助 \(set\) 或 \(map\) 实现,这二者的查找/插入/删除/修改操作时间复杂度都是 \(O(logn)\),符合时间复杂度要求。

参考代码

#include<bits/stdc++.h>
#define IOS ios::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
using namespace std; constexpr int INF = 0x3f3f3f3f;
constexpr int N = 2e5 + 7;
int n, m, d, cnt, a;
int ans[N]; int main() {
IOS
set<PII> st;
cin >> n >> m >> d;
for (int i = 0; i < n; ++ i) {
cin >> a;
st.insert(PII(a, i));
}
while (!st.empty()) {
auto f = st.begin();
int key = (*f).first;
ans[(*f).second] = ++ cnt;
st.erase(f);
while (!st.empty()) {
auto ne = st.upper_bound(PII(key + d, INF));
if (ne != st.end()) {
key = (*ne).first;
ans[(*ne).second] = cnt;
st.erase(ne);
} else break;
}
}
cout << cnt << '\n';
for (int i = 0; i < n; ++ i) cout << ans[i] << ' ';
return 0;
}

【巧用set实现对有序数组O(logn)时间复杂度增、删、查、改、二分操作】codeforces 1041 C. Coffee Break的更多相关文章

  1. [LeetCode]105. 从前序与中序遍历序列构造二叉树(递归)、108. 将有序数组转换为二叉搜索树(递归、二分)

    题目 05. 从前序与中序遍历序列构造二叉树 根据一棵树的前序遍历与中序遍历构造二叉树. 注意: 你可以假设树中没有重复的元素. 题解 使用HashMap记录当前子树根节点在中序遍历中的位置,方便每次 ...

  2. iOS常用算法之两个有序数组合并, 要求时间复杂度为0(n)

    思路: 常规思路: 先将一个数组作为合并后的数组, 然后遍历第二个数组的每项元素, 一一对比, 直到找到合适的, 就插入进去; 简单思路: 设置数组C, 对比A和B数组的首项元素, 找到最小的, 就放 ...

  3. 使用C语言封装数组,动态实现增删改查

    myArray.h : #pragma once //包含的时候只包含一次 #include <stdio.h> #include <stdlib.h> #include &l ...

  4. 【算法】字典的诞生:有序数组 PK 无序链表

    参考资料 <算法(java)>                           — — Robert Sedgewick, Kevin Wayne <数据结构>       ...

  5. 两个有序数组的上中位数和第K小数问题

    哈,再介绍个操蛋的问题.当然,网上有很多解答,但是能让你完全看懂的不多,即便它的结果是正确的,可是解释上也是有问题的. 所以,为了以示正听,我也做了分析和demo,只要你愿意学习,你就一定能学会,并且 ...

  6. 【算法】实现字典API:有序数组和无序链表

    参考资料 <算法(java)>                           — — Robert Sedgewick, Kevin Wayne <数据结构>       ...

  7. [LeetCode] Find Minimum in Rotated Sorted Array 寻找旋转有序数组的最小值

    Suppose a sorted array is rotated at some pivot unknown to you beforehand. (i.e., 0 1 2 4 5 6 7 migh ...

  8. [LeetCode] Convert Sorted Array to Binary Search Tree 将有序数组转为二叉搜索树

    Given an array where elements are sorted in ascending order, convert it to a height balanced BST. 这道 ...

  9. [LeetCode] Merge Sorted Array 混合插入有序数组

    Given two sorted integer arrays A and B, merge B into A as one sorted array. Note:You may assume tha ...

  10. [LeetCode] Remove Duplicates from Sorted Array 有序数组中去除重复项

    Given a sorted array, remove the duplicates in place such that each element appear only once and ret ...

随机推荐

  1. C++ 数组元素操作

    数组元素的移除 核心思路:创建一个新的内存空间存储移除后的数组,再将原数组delete释放,再将指针指向新数组. cout << "----------------------- ...

  2. Tabby,一款老外都在用的 SSH工具,竟然还支持网页操作

    会编程的蜗牛 主要分享java编程,也会涉及其他方向的技术分享. 1篇原创内容 公众号 序言各位好啊,我是会编程的蜗牛,作为java开发者,或者说编程人员,程序员的我们,Linux服务器总是我们一个绕 ...

  3. Flutter Forward 活动正式发布

    2023 年 1 月 25 日,Flutter 团队将在肯尼亚首都内罗毕举办 Flutter Forward 大会,并同时开启线上直播,敬请期待! 活动将于北京时间 1 月 25 日 22:30 开始 ...

  4. 关于CycleGAN损失函数的可视化理解

    看了<Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks>这篇论文,大致了解了C ...

  5. Excel读写之xlrd模块

    1.1.xlrd模块介绍 xlrd:用于读取Excle数据文件将返回的数据对象放到内存中,然后查询数据文件对象的相关信息. xlwt:用于在内存中生成新的数据文件对象,处理完成后写入到Excel数据文 ...

  6. 更强的RAG:向量数据库和知识图谱的结合

    传统 RAG 的局限性 经典的 RAG 架构以向量数据库(VectorDB)为核心来检索语义相似性上下文,让大语言模型(LLM)不需要重新训练就能够获取最新的知识,其工作流如下图所示: 这一架构目前广 ...

  7. 使用 reduce 统计字符串每个字母出现的次数

    // 统计字符串每个字母出现的次数 let str = 'asdfssaaasasasasaa' let obj = str.split('').reduce(function (prev, item ...

  8. vue本地项目启动时遇到coreJs相关报错问题处理

    启动项目的时候报错 : 是因为core.js这个包丢失,需要大家重新下载即可 : yarn add core-js

  9. 谈一谈 vuex 里边,actions,mutations ,state 之间的运转方式

    首先,调用 actions 中的方法,一般我们在 actions 做登录和登出的请求 : 然后调用 mutations 的方法修改数据 ,因为 mutations 方法是修改state的数据的唯一方法 ...

  10. Linux中ln 链接命令的用法

    ln的语法 Usage: ln [OPTION]... [-T] TARGET LINK_NAME (1st form) or: ln [OPTION]... TARGET (2nd form) or ...