题目分析:

这个做法不是最优的,想找最优解请关闭这篇博客。

首先容易想到用$f[i][S][j]$表示点$i$为根,考虑$S$这些点,$i$的深度为$j$情况的答案。

转移如下:

$f[i][S][j] = min(w(i,k)*(j+1)+f[k][S_0][j+1]+f[i][S-S_0][j])$ 其中$S != {i}$且$S_0 \subsetneqq S$且$k \in S_0$

$f[i][S][j] = 0$其中$S={i}$

这样已经可以通过了,时间复杂度是$O(n^3*3^n)$,原因是冗余状态太多。

但我们注意到对于每个集合我们都要遍历所有的为根的情况,用$g[i][S][j]$存储集合$S$中为根的最小值,可以优化到$O(n^2*3^n)$。

代码:

 #include<bits/stdc++.h>
using namespace std; int n,m; int g[][]; int f[][<<][],gi[][<<][]; void read(){
scanf("%d%d",&n,&m);
memset(g,0x3f,sizeof(g));
for(int i=;i<=m;i++){
int x,y,v; scanf("%d%d%d",&x,&y,&v);
if(g[x][y] > v) g[x][y] = g[y][x] = v;
}
} void paint(int now,int S,int j){
for(int i=;i<=n;i++){
if((<<i-)&S) continue;
gi[i][S][j] = min(1ll*gi[i][S][j],f[now][S][j]+1ll*g[now][i]*j);
}
} void work(){
memset(f,0x3f,sizeof(f));memset(gi,0x3f,sizeof(gi));
for(int i=n-;i>=;i--){
for(int j=;j<=n;j++){
f[j][<<j-][i] = ;
paint(j,<<j-,i);
}
for(int S=;S<(<<n);S++){
int zeta = __builtin_popcount(S);
if(zeta > n-i || zeta <= ) continue;
for(int k=;k<=n;k++){
if(!((<<k-)&S)) continue;
for(int S1 = S;S1;S1 = (S1-)&S){
f[k][S][i] = min(gi[k][S1][i+]+f[k][S-S1][i],f[k][S][i]);
}
paint(k,S,i);
}
}
}
int ans = ;
for(int i=;i<=n;i++){
ans = min(ans,f[i][(<<n)-][]);
}
printf("%d",ans);
} int main(){
read();
work();
return ;
}

[NOIP2017] 宝藏 【树形DP】【状压DP】的更多相关文章

  1. 【BZOJ】1076 [SCOI2008]奖励关 期望DP+状压DP

    [题意]n种宝物,k关游戏,每关游戏给出一种宝物,可捡可不捡.每种宝物有一个价值(有负数).每个宝物有前提宝物列表,必须在前面的关卡取得列表宝物才能捡起这个宝物,求期望收益.k<=100,n&l ...

  2. 【NOIP2017】宝藏 题解(状压DP)

    题目描述 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 nnn 个深埋在地下的宝藏屋, 也给出了这 nnn 个宝藏屋之间可供开发的m mm 条道路和它们的长度. 小明决心亲自前往挖掘所有宝藏屋中 ...

  3. CCF 201312-4 有趣的数 (数位DP, 状压DP, 组合数学+暴力枚举, 推公式, 矩阵快速幂)

    问题描述 我们把一个数称为有趣的,当且仅当: 1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次. 2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前. 3. 最高 ...

  4. hdu 4352 "XHXJ's LIS"(数位DP+状压DP+LIS)

    传送门 参考博文: [1]:http://www.voidcn.com/article/p-ehojgauy-ot.html 题解: 将数字num字符串化: 求[L,R]区间最长上升子序列长度为 K ...

  5. [转]状态压缩dp(状压dp)

    状态压缩动态规划(简称状压dp)是另一类非常典型的动态规划,通常使用在NP问题的小规模求解中,虽然是指数级别的复杂度,但速度比搜索快,其思想非常值得借鉴. 为了更好的理解状压dp,首先介绍位运算相关的 ...

  6. 状态压缩dp 状压dp 详解

    说到状压dp,一般和二进制少不了关系(还常和博弈论结合起来考,这个坑我挖了还没填qwq),二进制是个好东西啊,所以二进制的各种运算是前置知识,不了解的话走下面链接进百度百科 https://baike ...

  7. 洛谷 P3343 - [ZJOI2015]地震后的幻想乡(朴素状压 DP/状压 DP+微积分)

    题面传送门 鸽子 tzc 竟然来补题解了,奇迹奇迹( 神仙题 %%%%%%%%%%%% 解法 1: 首先一件很明显的事情是这个最小值可以通过类似 Kruskal 求最小生成树的方法求得.我们将所有边按 ...

  8. 51nod 1673 树有几多愁(链表维护树形DP+状压DP)

    题意 lyk有一棵树,它想给这棵树重标号. 重标号后,这棵树的所有叶子节点的值为它到根的路径上的编号最小的点的编号. 这棵树的烦恼值为所有叶子节点的值的乘积. lyk想让这棵树的烦恼值最大,你只需输出 ...

  9. bzoj4455 & loj2091 [Zjoi2016]小星星 容斥原理+树形DP(+状压DP?)

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4455 https://loj.ac/problem/2091 题解 很不错的一道题.(不过在当 ...

  10. BZOJ3836 [Poi2014]Tourism 【树形dp +状压dp】

    题目链接 BZOJ3836 题解 显然这是个\(NP\)完全问题,此题的解决全仗任意两点间不存在节点数超过10的简单路径的性质 这意味着什么呢? \(dfs\)树深度不超过\(10\) \(10\)很 ...

随机推荐

  1. 简单的词法设计——DFA模拟程序

    实验一.简单的词法设计--DFA模拟程序 一.实验目的 通过实验教学,加深学生对所学的关于编译的理论知识的理解,增强学生对所学知识的综合应用能力,并通过实践达到对所学的知识进行验证.通过对 DFA 模 ...

  2. 接口自动化框架(Pytest+request+Allure)

    前言: 接口自动化是指模拟程序接口层面的自动化,由于接口不易变更,维护成本更小,所以深受各大公司的喜爱. 接口自动化包含2个部分,功能性的接口自动化测试和并发接口自动化测试. 本次文章着重介绍第一种, ...

  3. Python Revisited Day 01

    逻辑操作符 身份操作符 is a = ['AAA', 3, None] b = ['AAA', 3, None] a is b #False b = a a is b #True 身份比较速度快,原因 ...

  4. 2017湘潭大学邀请赛H题(树的直径)

    链接:https://www.icpc.camp/contests/4mYguiUR8k0GKE H. Highway The input contains zero or more test cas ...

  5. Python_内置函数之zip

    zip函数用于将可迭代的对象作为参数,将对象中的元素打包成一个个元祖,然后返回这些元祖组成的列表.如果各个迭代器的元素个数不一致,则返回列表长度与最短的对象相同. l1 = [1, 2, 3] l2 ...

  6. Django的模板语言

      Django模板系统 官方文档 常用语法 只需要记两种特殊符号: {{  }}和 {% %} 变量相关的用{{}},逻辑相关的用{%%}. 变量 {{ 变量名 }} 变量名由字母数字和下划线组成. ...

  7. 现代程序设计 homework-10

    经过大半学期的学习和练习, 我们把学到的东西综合起来. 通过<现代程序设计>这门课,自己的确学到了好多东西.其实并不是说讲课有多棒,一是因为讲课的次数其实并不多,二是讲课的内容其实感觉并没 ...

  8. 08-webpack的介绍

    在这里我仅仅的是对webpack做个讲解,webpack这个工具非常强大,解决了我们前端很繁琐的一些工具流程繁琐的事情.如果感兴趣的同学,简易还是看官网吧. 中文链接地址:https://www.we ...

  9. Java使用Redis实现分布式锁来防止重复提交问题

    如何用消息系统避免分布式事务? - 少年阿宾 - BlogJavahttp://www.blogjava.net/stevenjohn/archive/2018/01/04/433004.html [ ...

  10. CMMI摘要

    CMMI_百度百科https://baike.baidu.com/item/CMMI CMMI分为哪几个等级?CMMI等级介绍_百度经验https://jingyan.baidu.com/articl ...