BZOJ3144[Hnoi2013]切糕——最小割
题目描述
.jpg)
输入
第一行是三个正整数P,Q,R,表示切糕的长P、 宽Q、高R。第二行有一个非负整数D,表示光滑性要求。接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤P, 1≤y≤Q, 1≤z≤R)。
100%的数据满足P,Q,R≤40,0≤D≤R,且给出的所有的不和谐值不超过1000。
输出
仅包含一个整数,表示在合法基础上最小的总不和谐值。
样例输入
1
6 1
6 1
2 6
2 6
样例输出
提示
最佳切面的f为f(1,1)=f(2,1)=2,f(1,2)=f(2,2)=1
根据题意显然我们需要在二维平面的每个坐标上删除一个点。删除点不好办,我们将点转化成边:将第三维坐标为$z$的点变成连接第$z$层与第$z+1$层的边,即连接$(x,y,z)$与$(x,y,z+1)$,流量为$v(x,y,z)$,然后源点连向第一层的点,最后一层的点连向汇点。如果不考虑$D$的限制,直接按上述连边跑最小割即可。但现在考虑$D$的限制,我们将$(x,y,z)$连向$(x',y',z-D)$,流量为$INF$表示这条边不能被割。可以发现如果相邻两个坐标割的边第三维坐标差大于$D$时,就可以有流量绕过被割的边从相邻坐标的边流过去。
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
#define INF 1000000000
using namespace std;
int head[70000];
int next[800000];
int to[800000];
int val[800000];
int d[70000];
int q[70000];
int n,m,r,D;
int f[50][50][50];
int tot=1;
int ans;
int S,T;
int dx[7]={0,1,0,-1};
int dy[7]={1,0,-1,0};
void add(int x,int y,int v)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
val[tot]=v;
tot++;
next[tot]=head[y];
head[y]=tot;
to[tot]=x;
val[tot]=0;
}
bool bfs(int S,int T)
{
int r=0;
int l=0;
memset(q,0,sizeof(q));
memset(d,-1,sizeof(d));
q[r++]=S;
d[S]=0;
while(l<r)
{
int now=q[l];
for(int i=head[now];i;i=next[i])
{
if(d[to[i]]==-1&&val[i]!=0)
{
d[to[i]]=d[now]+1;
q[r++]=to[i];
}
}
l++;
}
return d[T]!=-1;
}
int dfs(int x,int flow)
{
if(x==T)
{
return flow;
}
int now_flow;
int used=0;
for(int i=head[x];i;i=next[i])
{
if(d[to[i]]==d[x]+1&&val[i]!=0)
{
now_flow=dfs(to[i],min(flow-used,val[i]));
val[i]-=now_flow;
val[i^1]+=now_flow;
used+=now_flow;
if(now_flow==flow)
{
return flow;
}
}
}
if(used==0)
{
d[x]=-1;
}
return used;
}
void dinic()
{
while(bfs(S,T)==true)
{
ans+=dfs(S,0x3f3f3f);
}
}
int calc(int x,int y,int z)
{
return y+(x-1)*m+(z-1)*n*m;
}
int main()
{
scanf("%d%d%d%d",&n,&m,&r,&D);
S=n*m*(r+1)+1;
T=S+1;
for(int k=1;k<=r;k++)
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
scanf("%d",&f[i][j][k]);
}
}
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
add(S,calc(i,j,1),INF);
for(int k=1;k<=r;k++)
{
add(calc(i,j,k),calc(i,j,k+1),f[i][j][k]);
if(k<=D)
{
continue;
}
for(int s=0;s<4;s++)
{
int fx=dx[s]+i,fy=dy[s]+j;
if(fx>=1&&fx<=n&&fy>=1&&fy<=m)
{
add(calc(i,j,k),calc(fx,fy,k-D),INF);
}
}
}
add(calc(i,j,r+1),T,INF);
}
}
dinic();
printf("%d",ans);
}
BZOJ3144[Hnoi2013]切糕——最小割的更多相关文章
- bzoj3144 [HNOI2013]切糕(最小割)
bzoj3144 [HNOI2013]切糕(最小割) bzoj Luogu 题面描述见上 题解时间 一开始我真就把这玩意所说的切面当成了平面来做的 事实上只是说相邻的切点高度差都不超过 $ d $ 对 ...
- 【BZOJ3144】[Hnoi2013]切糕 最小割
[BZOJ3144][Hnoi2013]切糕 Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q ...
- 【BZOJ-3144】切糕 最小割-最大流
3144: [Hnoi2013]切糕 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1261 Solved: 700[Submit][Status] ...
- bzoj 3144: [Hnoi2013]切糕 最小割
3144: [Hnoi2013]切糕 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 681 Solved: 375[Submit][Status] ...
- Luogu P3227 [HNOI2013]切糕 最小割
首先推荐一个写的很好的题解,个人水平有限只能写流水账,还请见谅. 经典的最小割模型,很多人都说这个题是水题,但我还是被卡了=_= 技巧:加边表示限制 在没有距离\(<=d\)的限制时候,我们对每 ...
- bzoj 3144 [Hnoi2013]切糕——最小割
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3144 一根纵轴上切一个点,可以把一根纵轴上的点连成一串来体现.自己的写法是每个点连向前一个点 ...
- BZOJ3144 Hnoi2013 切糕 【网络流】*
BZOJ3144 Hnoi2013 切糕 Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的 ...
- BZOJ3144 [Hnoi2013]切糕 【最小割】
题目 输入格式 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤ ...
- BZOJ3144/LG3227 「HNOI2013」切糕 最小割离散变量模型
问题描述 BZOJ3144 LG3227 还想粘下样例 输入: 2 2 2 1 6 1 6 1 2 6 2 6 输出: 6 题解 关于离散变量模型,我不想再抄一遍,所以: 对于样例,可以建立出这样的图 ...
随机推荐
- 开发框架模块视频系列(2)-Winform分页控件介绍
在软件开发过程中,为了节省开发时间,提高开发效率,统一用户处理界面,尽可能使用成熟.功能强大的分页控件,这款Winform环境下的分页控件,集成了数据分页.内容提示.数据打印.数据导出.表头中文转义等 ...
- 深入浅出:HTTP/2
上篇文章深入浅出:5G和HTTP里给自己挖了一根深坑,说是要写一篇关于HTTP/2的文章,今天来还账了. 本文分为以下几个部分: HTTP/2的背景 HTTP/2的特点 HTTP/2的协议分析 HTT ...
- node express 静态资源
实例代码 const express = require('express') const path = require('path') const app = express() app.use(e ...
- 朱晔和你聊Spring系列S1E3:Spring咖啡罐里的豆子
标题中的咖啡罐指的是Spring容器,容器里装的当然就是被称作Bean的豆子.本文我们会以一个最基本的例子来熟悉Spring的容器管理和扩展点. 阅读PDF版本 为什么要让容器来管理对象? 首先我们来 ...
- js中布尔值为false的六种情况
下面6种值转化为布尔值时为false,其他转化都为true 1.undefined(未定义,找不到值时出现) 2.null(代表空值) 3.false(布尔值的false,字符串"false ...
- centos7下zabbix安装与部署
1.Zabbix介绍 zabbix是一个基于WEB界面的提供分布式系统监视以及网络监视功能的企业级的开源解决方案. zabbix能监视各种网络参数,保证服务器系统的安全运营:并提供灵活的通知机制以让系 ...
- mysql_查的小理解
show create table employee; 对这个语句的小理解: 顿悟呀,之前一直不太理解这条语句,现在忽然觉得明朗起来.他就是展示创建这个表格时的SQL语句.执行上述代码之后结果如下: ...
- 6-2 Verbs and Adjectives with that clauses
1 Many sentences in English contain two clauses: a main clause and a "that" clause. The &q ...
- Redis 使用命令行的方式 获取 hash type key 的value值
1. 之前只是非常简单的看了下 get key 和 set key 但是这样 设置的 key value 应该是都 string 类型的 2. 但是没考虑过其他类型的 是如何获取 相关内容的 ,一直 ...
- 123. 单词搜索(DFS)
描述 给出一个二维的字母板和一个单词,寻找字母板网格中是否存在这个单词. 单词可以由按顺序的相邻单元的字母组成,其中相邻单元指的是水平或者垂直方向相邻.每个单元中的字母最多只能使用一次. 样例 给出 ...