[SNOI2017]一个简单的询问【莫队+容斥原理】
题目大意
给你一个数列,让你求两个区间内各个数出现次数的乘积的和。
分析
数据范围告诉我们可以用莫队过。
我并不知道什么曼哈顿什么乱七八糟的东西,但是我们可以用容斥原理将这个式子展开来。
\[\sum^{\infty}_{0}get(l_1,r_1,x)\times get(l_2,r2,x)\]
上述式子是题目给出的式子。
我们都知道乘法具有交换律和分配律。
将式子展开成以下的性质
\[\sum^{\infty}_{x=0} get(0,r_1,x) \times get(0,r_2,x)-\sum^{\infty}_{x=0}get(0,l_1-1,x)\times get(0,r_2,x)-\sum^{\infty}_{x=0}get(0,r_1,x)\times get(0,l_2-1,x)+\sum^{\infty}_{x=0}get(0,l_1-1,x)\times get(0,l_2-1,x)\]
将询问拆成四个部分,最终一起解决,就可以了。
代码
#include <bits/stdc++.h>
#define ll long long
#define ms(a, b) memset(a, b, sizeof(a))
#define inf 0x3f3f3f3f
#define N 50005
using namespace std;
template <typename T>
inline void read(T &x) {
    x = 0; T fl = 1; char ch = 0;
    for (; ch < '0' || ch > '9'; ch = getchar())
        if (ch == '-') fl = -1;
    for (; ch >= '0' && ch <= '9'; ch = getchar())
        x = (x << 1) + (x << 3) + (ch ^ 48);
    x *= fl;
}
struct Rec_Qus {
    int l, r, id, blo, opt;
}q[N << 2];
int Dl[N], Dr[N], a[N];
ll res, ans[N];
int n, m, tot, block;
bool cmp(Rec_Qus A, Rec_Qus B) {
    return (A.blo == B.blo)? (A.r < B.r): (A.blo < B.blo);
}
void AddL(int x) { res += Dr[a[x]]; ++ Dl[a[x]]; }
void AddR(int x) { res += Dl[a[x]]; ++ Dr[a[x]]; }
void DecL(int x) { res -= Dr[a[x]]; -- Dl[a[x]]; }
void DecR(int x) { res -= Dl[a[x]]; -- Dr[a[x]]; }
int main() {
    ms(Dl, 0); ms(Dr, 0);
    read(n); block = sqrt(n);
    for (int i = 1; i <= n; i ++) read(a[i]);
    read(m);
    tot = 0;
    for (int i = 1; i <= m; i ++) {
        int l1, r1, l2, r2;
        read(l1); read(r1); read(l2); read(r2);
        q[++ tot] = (Rec_Qus) {l1 - 1, l2 - 1, i, (l1 - 2) / block + 1, 1};
        q[++ tot] = (Rec_Qus) {r1, r2, i, (r1 - 1) / block + 1, 1};
        q[++ tot] = (Rec_Qus) {l1 - 1, r2, i, (l1 - 2) / block + 1, -1};
        q[++ tot] = (Rec_Qus) {r1, l2 - 1, i, (r1 - 1) / block + 1, -1};
    }
    sort(q + 1, q + 1 + tot, cmp);
    int l = 0, r = 0;
    for (int i = 1; i <= tot; i ++) {
        while (r < q[i].r) AddR(++ r);
        while (l > q[i].l) DecL(l --);
        while (r > q[i].r) DecR(r --);
        while (l < q[i].l) AddL(++ l);
        ans[q[i].id] += q[i].opt * res;
    }
    for (int i = 1; i <= m; i ++) printf("%lld\n", ans[i]);
    return 0;
}
[SNOI2017]一个简单的询问【莫队+容斥原理】的更多相关文章
- 【BZOJ5016】[Snoi2017]一个简单的询问 莫队
		[BZOJ5016][Snoi2017]一个简单的询问 Description 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出 get(l,r,x)表示计 ... 
- Gym101138D Strange Queries/BZOJ5016 SNOI2017 一个简单的询问 莫队、前缀和、容斥
		传送门--Gym 传送门--BZOJ THUWC2019D1T1撞题可还行 以前有些人做过还问过我,但是我没有珍惜,直到进入考场才追悔莫及-- 设\(que_{i,j}\)表示询问\((1,i,1,j ... 
- 【bzoj5016】[Snoi2017]一个简单的询问  莫队算法
		题目描述 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出 get(l,r,x)表示计算区间[l,r]中,数字x出现了多少次. 输入 第一行,一个数字N,表 ... 
- bzoj5016 & loj2254 [Snoi2017]一个简单的询问   莫队
		题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=5016 https://loj.ac/problem/2254 题解 原式是这样的 \[ \su ... 
- BZOJ5016:[SNOI2017]一个简单的询问(莫队)
		Description 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出 get(l,r,x)表示计算区间[l,r]中,数字x出现了多少次. Input 第 ... 
- [SNOI2017]一个简单的询问
		[SNOI2017]一个简单的询问 题目大意: 给定一个长度为\(n(n\le50000)\)的序列\(A(1\le A_i\le n)\),定义\(\operatorname{get}(l,r,x) ... 
- BZOJ5016 Snoi2017一个简单的询问(莫队)
		容易想到区间转化成前缀和.这样每个询问有了二维坐标,莫队即可. #include<iostream> #include<cstdio> #include<cmath> ... 
- bzoj 5016: [Snoi2017]一个简单的询问
		Description 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出 get(l,r,x)表示计算区间[l,r]中,数字x出现了多少次. Input 第 ... 
- [bzoj5016][Snoi2017]一个简单的询问
		来自FallDream的博客,未经允许,请勿转载,谢谢. 给你一个长度为N的序列ai,1≤i≤N和q组询问,每组询问读入l1,r1,l2,r2,需输出 get(l,r,x)表示计算区间[l,r]中 ... 
随机推荐
- MySQLl导入导出SQL文件
			window 1.导出整个数据库 mysqldump -u 用户名 -p 数据库名 > 导出的文件名 mysqldump -u dbuser -p dbname > dbname.sql ... 
- Pair Project
			以前只是一个人完成一个项目,不论什么都是,现在突然要两个人一起来写, 听上去挺稀奇的,也挺简单的,可惜了就是“听上去”而已.我认为这也是一种技术啊~ 我跟我的搭档研究了好久好久,选择了好久,然后也选了 ... 
- asp.net core认证和授权的初始认识--claim、claimsidentity、claimsprincipal
			Claim表示一个声明单元,它用来组成ClaimsIdentity.ClaimsIdentity表示一个证件,例如身份证,身份证上面的名字表示一个Claim,身份证号也表示一个Claim,所有这些Cl ... 
- syncthing 多主机同步文件工具
			周五看了下阮一峰的blog 看到有一个 syncthing的小工具挺好用的 进行了简单的尝试: 1. 下载文件位置: https://syncthing.net 2. 下载文件后的简单安装 绿色版直接 ... 
- Python 爬虫  解析库的使用  ---  XPath
			一.使用XPath XPath ,全称XML Path Language,即XML路径语言,它是一门在XML文档中查找信息的语言.它最初是用来搜寻XML文档的,但是它同样适用于HTML文档的搜索. 所 ... 
- Codeforces 1154F Shovels Shop
			题目链接:http://codeforces.com/problemset/problem/1154/F 题目大意: 商店有n把铲子,欲购k把,现有m种优惠,每种优惠可使用多次,每种优惠(x, y)表 ... 
- Swagger2常用注解及其说明 (转)
			Api 用在Controller中,标记一个Controller作为swagger的文档资源 属性名称 说明 value Controller的注解 description 对api资源的描述 hid ... 
- git连接到github
			基本流程如图 如何配置SSH key:在gitBash里执行. 1.检查电脑上是否生成过了,如果已经生成了,则需要删除后再操作 cd ~ cd .ssh 提示:No such file or dire ... 
- Service Account和RBAC授权
			一.介绍 Service Account概念的引入是基于这样的使用场景:运行在pod里的进程需要调用Kubernetes API以及非Kubernetes API的其它服务.Service Accou ... 
- js splice vs slice
			js splice vs slice https://stackoverflow.com/questions/37601282/javascript-array-splice-vs-slice htt ... 
