【CF981F】Round Marriage(二分答案,二分图匹配,Hall定理)
【CF981F】Round Marriage(二分答案,二分图匹配,Hall定理)
题面
题解
很明显需要二分。
二分之后考虑如果判定是否存在完备匹配,考虑\(Hall\)定理。
那么如果不合法,假设我们存在一个极小的集合满足连到右侧的点数小于集合大小。因为是极小的,所以删去一个点之后就可以匹配,那么意为着某个点连出去的点和其他所有点有交,既然有交,那么一定这一段区间都可以加入进来形成一个不合法的集合。所以我们可以把存在一个点集不合法变成存在一段连续区间不合法。
假设每个点连向另外一侧的区间是\([L_l,R_i]\),那么如果区间\([l,r]\)不满足\(Hall\)定理,那么可以得到\(r-l>R_r-L_l\),移项之后可以得到\(r-R_r>l-L_l\),然后随便维护一下就行了。
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define ll long long
#define MAX 800800
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,L;ll a[MAX],b[MAX];
bool check(int len)
{
int mx=-1e9,p1=1,p2=1;
for(int i=1;i<=n+n;++i)
{
while(p1<=n+n+n+n&&b[p1]<a[i]-len)++p1;
while(p2<=n+n+n+n&&b[p2]<=a[i]+len)++p2;
mx=max(mx,p1-i);
if(p2-i-1<mx)return false;
}
return true;
}
int main()
{
n=read();L=read();
for(int i=1;i<=n;++i)a[i]=read();
for(int i=1;i<=n;++i)b[i]=read();
sort(&a[1],&a[n+1]);sort(&b[1],&b[n+1]);
for(int i=1;i<=n;++i)a[i]+=L,a[i+n]=a[i]+L;
for(int i=1;i<=n+n+n;++i)b[i+n]=b[i]+L;
int l=0,r=L,ret=L;
while(l<=r)
{
int mid=(l+r)>>1;
if(check(mid))r=mid-1,ret=mid;
else l=mid+1;
}
printf("%d\n",ret);
return 0;
}
【CF981F】Round Marriage(二分答案,二分图匹配,Hall定理)的更多相关文章
- 洛谷P4589 [TJOI2018]智力竞赛(二分答案 二分图匹配)
题意 题目链接 给出一个带权有向图,选出n + 1n+1条链,问能否全部点覆盖,如果不能,问不能覆盖的点权最小值最大是多少 Sol TJOI怎么净出板子题 二分答案之后直接二分图匹配check一下. ...
- BZOJ 4443 [Scoi2015]小凸玩矩阵(二分答案+二分图匹配)
[题目链接]http://www.lydsy.com/JudgeOnline/problem.php?id=4443 [题目大意] 从矩阵中选出N个数,其中任意两个数字不能在同一行或同一列 求选出来的 ...
- BZOJ 2547: [Ctsc2002]玩具兵(二分答案+二分图匹配)
传送门 解题思路 可以发现天兵不用管,答案的一个上界是\(2*k\),就是天兵一个个换.刚开始写了个拆\(6\)点的网络流,调了半天发现自己假了..说说正解,首先可以发现交换士兵其实就是种类的交换,那 ...
- [CF981F]Round Marriage[二分+霍尔定理]
题意 洛谷 分析 参考了Icefox 首先二分,然后考虑霍尔定理判断是否有完美匹配.如果是序列的话,因为这里不会出现 \(j<i,L(i)<L(j)\) 或者 \(j<i,R(i)& ...
- POJ 2289 Jamie's Contact Groups / UVA 1345 Jamie's Contact Groups / ZOJ 2399 Jamie's Contact Groups / HDU 1699 Jamie's Contact Groups / SCU 1996 Jamie's Contact Groups (二分,二分图匹配)
POJ 2289 Jamie's Contact Groups / UVA 1345 Jamie's Contact Groups / ZOJ 2399 Jamie's Contact Groups ...
- BZOJ 3993: [SDOI2015]星际战争 [二分答案 二分图]
3993: [SDOI2015]星际战争 题意:略 R1D2T1考了裸二分答案+二分图最大匹配... #include <iostream> #include <cstdio> ...
- noip 2010 关押罪犯 二分答案+二分图染色 || 并查集
题目链接 题目描述 S 城现有两座监狱,一共关押着N 名罪犯,编号分别为1~N.他们之间的关系自然也极不和谐.很多罪犯之间甚至积怨已久,如果客观条件具备则随时可能爆发冲突.我们用"怨气值&q ...
- POJ 2112-Optimal Milking-二分答案+二分图匹配
此题有多种做法. 使用floyd算法预处理最短路,二分答案,对于每一个mid,如果距离比mid小就连边, 注意把每个机器分成m个点.这样跑一个最大匹配,如果都匹配上就可以减小mid值. 用的算法比较多 ...
- CF85E Guard Towers(二分答案+二分图)
题意 已知 N 座塔的坐标,N≤5000 把它们分成两组,使得同组内的两座塔的曼哈顿距离最大值最小 在此前提下求出有多少种分组方案 mod 109+7 题解 二分答案 mid 曼哈顿距离 >mi ...
- 2018.06.30 BZOJ4443: [Scoi2015]小凸玩矩阵(二分加二分图匹配)
4443: [Scoi2015]小凸玩矩阵 Time Limit: 10 Sec Memory Limit: 128 MB Description 小凸和小方是好朋友,小方给小凸一个N*M(N< ...
随机推荐
- UIAutomatorViewer 出现错误:Unable to connect to adb
最近升级了AndroidSDK,打开UIAutomatorViewer.bat,结果发现获取不了Android设备界面上的UI信息.经过一番努力,终于把这个问题解决了,详细过程如下: 1. Unabl ...
- Python爬虫——用BeautifulSoup、python-docx爬取廖雪峰大大的教程为word文档
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 廖雪峰大大贡献的教程写的不错,写了个爬虫把教程保存为word文件,供大家方便下载学习:http://p ...
- JQuery/JS select标签动态设置选中值、设置禁止选择 button按钮禁止点击 select获取选中值
//**1.设置选中值:(根据索引确定选中值)**// var osel=document.getElementById("selID"); //得到select的ID var o ...
- mybatis一级缓存详解
mybatis缓存分为一级缓存,二级缓存和自定义缓存.本文重点讲解一级缓存 一:前言 在介绍缓存之前,先了解下mybatis的几个核心概念: * SqlSession:代表和数据库的一次会话,向用户提 ...
- Day2 列表,元组,字典,集合
一,列表 定义:[]内以逗号分隔,按照索引,存放各种数据类型,每个位置代表一个元素. list=['alex', 'jack', 'chen', 'shaoye'] #创建一个列表. 特性: 1.可存 ...
- vue-cli项目开发/生产环境代理实现跨域请求+webpack配置开发/生产环境的接口地址
一.开发环境中跨域 使用 Vue-cli 创建的项目,开发地址是 localhost:8080,需要访问非本机上的接口http://10.1.0.34:8000/queryRole.不同域名之间的访问 ...
- flutter屏幕适配
现在的手机品牌和型号越来越多,导致我们平时写布局的时候会在个不同的移动设备上显示的效果不同, 比如我们的设计稿一个View的大小是300px,如果直接写300px,可能在当前设备显示正常,但到了其他设 ...
- springMVC中@RequestParam和@RequestBody的作用
@RequestParam和@RequestBody是什么区别,估计很多人还是不太清楚, 因为一般用@ RequestParam就足够传入参数了,要说他们区别,就需要知道contentType是什么? ...
- hadoop分布式系统架构详解
hadoop 简单来说就是用 java写的分布式 ,处理大数据的框架,主要思想是 “分组合并” 思想. 分组:比如 有一个大型数据,那么他就会将这个数据按照算法分成多份,每份存储在 从属主机上,并且在 ...
- python爬虫之scrapy的pipeline的使用
scrapy的pipeline是一个非常重要的模块,主要作用是将return的items写入到数据库.文件等持久化模块,下面我们就简单的了解一下pipelines的用法. 案例一: items池 cl ...