启发式合并

  有\(n\)个集合,每次让你合并两个集合,或询问一个集合中是否存在某个元素。

​  我们可以用平衡树/set维护集合。

​  对于合并两个\(A,B\),如果\(|A|<|B|\),那么我们就把\(A\)中的每个元素暴力加到\(B\)中,否则就把\(B\)中的元素暴力加到\(A\)中。

​  对于一次把\(A\)中的每个元素暴力加到\(B\)中的操作,\(|A|\)会变成\(|A|+|B|\),也就是说大小至少会翻倍,所以一个元素最多被暴力插入\(\log n\)次。每次插入的时间复杂度是\(O(\log n)\),所以总的时间复杂度是\(O(n\log^2n)\)。

线段树合并

​  如果两棵线段树有一颗为空,就直接返回另一棵。

​  否则把\(x\)的左儿子和\(y\)的左儿子合并在一起,作为\(x\)的左儿子,然后把\(x\)的右儿子和\(y\)的右儿子合并在一起,作为\(x\)的右儿子。

​  设值域为\([1,m]\),总的点数为\(n\)。

  可以发现线段树合并的过程中每递归一次就要删掉一个节点。

  所以总复杂度就是\(O(\)删掉的节点数\()\)。

​  分裂一次会增加\(O(\log m)\)个节点。

treap合并&splay合并

  可以去看dwj2018集训队论文。

启发式合并&线段树合并/分裂&treap合并&splay合并的更多相关文章

  1. HDU 3308 LCIS (线段树&#183;单点更新&#183;区间合并)

    题意  给你一个数组  有更新值和查询两种操作  对于每次查询  输出相应区间的最长连续递增子序列的长度 基础的线段树区间合并  线段树维护三个值  相应区间的LCIS长度(lcis)  相应区间以左 ...

  2. BZOJ4552 HEOI2016/TJOI2016排序(线段树合并+线段树分裂)

    很久以前写过二分答案离线的做法,比较好理解.事实上这还是一个线段树合并+分裂的板子题,相比离线做法以更优的复杂度做了更多的事情.具体不说了.怎么交了一遍luogu上就跑第一了啊 #include< ...

  3. 启发式合并 splay合并 线段树合并基础

    Gold is everywhen! - somebody 启发式合并 将小的集合一个个插入到大的集合. 每次新集合大小至少比小集合大一倍,因此每个元素最多合并\(\log n\)次,总复杂度为\(n ...

  4. [BZOJ2733][HNOI2010]永无乡 解题报告 启发式合并,线段树合并

    好久没更新博客了,前段时间一直都在考试,都没时间些,现在终于有点闲了(cai guai)... 写了一道题,[HNOI2012]永无乡,其实是一道板子题,我发现我写了好多板子题...还是太菜了... ...

  5. bzoj2733: [HNOI2012]永无乡(splay+启发式合并/线段树合并)

    这题之前写过线段树合并,今天复习Splay的时候想起这题,打算写一次Splay+启发式合并. 好爽!!! 写了长长的代码(其实也不长),只凭着下午的一点记忆(没背板子...),调了好久好久,过了样例, ...

  6. HDU - 4358 Boring counting (树上启发式合并/线段树合并)

    题目链接 题意:统计树上每个结点中恰好出现了k次的颜色数. dsu on tree/线段树合并裸题. 启发式合并1:(748ms) #include<bits/stdc++.h> usin ...

  7. 5.20 省选模拟赛 T1 图 启发式合并 线段树合并 染色计数问题

    LINK:图 在说这道题之前吐槽一下今天的日子 520 = 1+1+4+514. /cy 这道题今天做的非常失败 一点分都没拿到手 关键是今天的T3 把我整个人给搞崩了. 先考虑 如果得到了这么一张图 ...

  8. Luogu 4556 雨天的尾巴 - 启发式合并线段树

    Solution 用$col$记录 数量最多的种类, $sum$记录 种类$col$ 的数量. 然后问题就是树上链修改, 求 每个节点 数量最多的种类. 用树上差分 + 线段树合并更新即可. Code ...

  9. BZOJ 4552 [Tjoi2016&Heoi2016]排序 线段树的分裂和合并

    https://www.lydsy.com/JudgeOnline/problem.php?id=4552 https://blog.csdn.net/zawedx/article/details/5 ...

随机推荐

  1. itoa函数实现

    1.      整数字符转化为字符串数 // 将整数转换成字符串数,不用函数itoa // 思路:采用加'0',然后在逆序的方法 #include <iostream> using nam ...

  2. 009-定时关闭弹出广告窗口 By BoAi 20190414

    ;~ 定时关闭弹出广告窗口 By BoAi 20190414 ; ### 参数设置段 ######################################SingleInstance,forc ...

  3. Linux—CentOS7下python开发环境配置

    CentOS7下python开发环境配置 上一篇博客讲了如何在Centos7下安装python3(https://www.cnblogs.com/zivli/p/9937608.html),这一次配置 ...

  4. 【学习总结】【Java】Git学习-上传本地已有代码到GitHub

    < Git学成归来后的第一次实战 > 上传本地已有代码到GitHub 以之前学了一小半的Java基础教程代码为例 <深坑预警:在GitHub新建仓库那一步,不要勾选readme,不然 ...

  5. IdentityServer4【Topic】之保护APIs

    Protecting APIs 保护api 默认情况下IdentityServer将access token发布成JWT(json web token)格式的. 现在,每个相关的平台都支持验证JWT令 ...

  6. C#复习笔记(5)--C#5:简化的异步编程(异步编程的深入分析)

    首先,阐明一下标题的这个“深入分析”起得很惭愧,但是又不知道该起什么名字,这个系列也主要是做一些复习的笔记,供自己以后查阅,如果能够帮助到别人,那自然是再好不过了. 然后,我想说的是异步方法的状态机真 ...

  7. C++多态(静多态和动多态)

    如今的C++已经是个多重泛型编程语言(multiparadigm programming lauguage),一个同时支持过程形式(procedural).面向对象形式(object-oriented ...

  8. scrapy几种反反爬策略

    一.浏览器代理 1.直接处理: 1.1在setting中配置浏览器的各类代理: user_agent_list=[ "Mozilla/5.0 (Windows NT 10.0; Win64; ...

  9. requests 使用免费的代理ip爬取网站

    import requests import queue import threading from lxml import etree #要爬取的URL url = "http://xxx ...

  10. vue element-ui 绑定@keyup事件无效

    解决办法: <el-input @keyup.native="ajax"></el-input> 加上.native覆盖原有封装的keyup事件即可