[matlab] 23.matlab自带kmeans函数 实现聚类
clc,clear all;
point=[1.40000000000000,0.200000000000000;1.40000000000000,0.200000000000000;1.30000000000000,0.200000000000000;1.50000000000000,0.200000000000000;1.40000000000000,0.200000000000000;1.70000000000000,0.400000000000000;1.40000000000000,0.300000000000000;1.50000000000000,0.200000000000000;1.40000000000000,0.200000000000000;1.50000000000000,0.100000000000000;1.50000000000000,0.200000000000000;1.60000000000000,0.200000000000000;1.40000000000000,0.100000000000000;1.10000000000000,0.100000000000000;1.20000000000000,0.200000000000000;1.50000000000000,0.400000000000000;1.30000000000000,0.400000000000000;1.40000000000000,0.300000000000000;1.70000000000000,0.300000000000000;1.50000000000000,0.300000000000000;1.70000000000000,0.200000000000000;1.50000000000000,0.400000000000000;1,0.200000000000000;1.70000000000000,0.500000000000000;1.90000000000000,0.200000000000000;1.60000000000000,0.200000000000000;1.60000000000000,0.400000000000000;1.50000000000000,0.200000000000000;1.40000000000000,0.200000000000000;1.60000000000000,0.200000000000000;1.60000000000000,0.200000000000000;1.50000000000000,0.400000000000000;1.50000000000000,0.100000000000000;1.40000000000000,0.200000000000000;1.50000000000000,0.200000000000000;1.20000000000000,0.200000000000000;1.30000000000000,0.200000000000000;1.40000000000000,0.100000000000000;1.30000000000000,0.200000000000000;1.50000000000000,0.200000000000000;1.30000000000000,0.300000000000000;1.30000000000000,0.300000000000000;1.30000000000000,0.200000000000000;1.60000000000000,0.600000000000000;1.90000000000000,0.400000000000000;1.40000000000000,0.300000000000000;1.60000000000000,0.200000000000000;1.40000000000000,0.200000000000000;1.50000000000000,0.200000000000000;1.40000000000000,0.200000000000000;4.70000000000000,1.40000000000000;4.50000000000000,1.50000000000000;4.90000000000000,1.50000000000000;4,1.30000000000000;4.60000000000000,1.50000000000000;4.50000000000000,1.30000000000000;4.70000000000000,1.60000000000000;3.30000000000000,1;4.60000000000000,1.30000000000000;3.90000000000000,1.40000000000000;3.50000000000000,1;4.20000000000000,1.50000000000000;4,1;4.70000000000000,1.40000000000000;3.60000000000000,1.30000000000000;4.40000000000000,1.40000000000000;4.50000000000000,1.50000000000000;4.10000000000000,1;4.50000000000000,1.50000000000000;3.90000000000000,1.10000000000000;4.80000000000000,1.80000000000000;4,1.30000000000000;4.90000000000000,1.50000000000000;4.70000000000000,1.20000000000000;4.30000000000000,1.30000000000000;4.40000000000000,1.40000000000000;4.80000000000000,1.40000000000000;5,1.70000000000000;4.50000000000000,1.50000000000000;3.50000000000000,1;3.80000000000000,1.10000000000000;3.70000000000000,1;3.90000000000000,1.20000000000000;5.10000000000000,1.60000000000000;4.50000000000000,1.50000000000000;4.50000000000000,1.60000000000000;4.70000000000000,1.50000000000000;4.40000000000000,1.30000000000000;4.10000000000000,1.30000000000000;4,1.30000000000000;4.40000000000000,1.20000000000000;4.60000000000000,1.40000000000000;4,1.20000000000000;3.30000000000000,1;4.20000000000000,1.30000000000000;4.20000000000000,1.20000000000000;4.20000000000000,1.30000000000000;4.30000000000000,1.30000000000000;3,1.10000000000000;4.10000000000000,1.30000000000000;6,2.50000000000000;5.10000000000000,1.90000000000000;5.90000000000000,2.10000000000000;5.60000000000000,1.80000000000000;5.80000000000000,2.20000000000000;6.60000000000000,2.10000000000000;4.50000000000000,1.70000000000000;6.30000000000000,1.80000000000000;5.80000000000000,1.80000000000000;6.10000000000000,2.50000000000000;5.10000000000000,2;5.30000000000000,1.90000000000000;5.50000000000000,2.10000000000000;5,2;5.10000000000000,2.40000000000000;5.30000000000000,2.30000000000000;5.50000000000000,1.80000000000000;6.70000000000000,2.20000000000000;6.90000000000000,2.30000000000000;5,1.50000000000000;5.70000000000000,2.30000000000000;4.90000000000000,2;6.70000000000000,2;4.90000000000000,1.80000000000000;5.70000000000000,2.10000000000000;6,1.80000000000000;4.80000000000000,1.80000000000000;4.90000000000000,1.80000000000000;5.60000000000000,2.10000000000000;5.80000000000000,1.60000000000000;6.10000000000000,1.90000000000000;6.40000000000000,2;5.60000000000000,2.20000000000000;5.10000000000000,1.50000000000000;5.60000000000000,1.40000000000000;6.10000000000000,2.30000000000000;5.60000000000000,2.40000000000000;5.50000000000000,1.80000000000000;4.80000000000000,1.80000000000000;5.40000000000000,2.10000000000000;5.60000000000000,2.40000000000000;5.10000000000000,2.30000000000000;5.10000000000000,1.90000000000000;5.90000000000000,2.30000000000000;5.70000000000000,2.50000000000000;5.20000000000000,2.30000000000000;5,1.90000000000000;5.20000000000000,2;5.40000000000000,2.30000000000000;5.10000000000000,1.80000000000000]; figure;
plot(point(:,1),point(:,2),'ks','MarkerSize',5);
title 'Fisher''s Iris Data';
xlabel 'Petal Lengths (cm)';
ylabel 'Petal Widths (cm)'; rng(1); % For reproducibility
[idx,C] = kmeans(point,3); x1 = min(point(:,1)):0.01:max(point(:,1));
x2 = min(point(:,2)):0.01:max(point(:,2));
[x1G,x2G] = meshgrid(x1,x2);
XGrid = [x1G(:),x2G(:)]; % Defines a fine grid on the plot idx2Region = kmeans(XGrid,3,'MaxIter',1,'Start',C); figure;
gscatter(XGrid(:,1),XGrid(:,2),idx2Region,[0,0.75,0.75;0.75,0,0.75;0.75,0.75,0],'..');
hold on;
plot(point(:,1),point(:,2),'ks','MarkerSize',5);
title 'Fisher''s Iris Data';
xlabel 'Petal Lengths (cm)';
ylabel 'Petal Widths (cm)';
legend('Region 1','Region 2','Region 3','Data','Location','SouthEast');
hold off;
kmeans


rng default; % For reproducibility
X = [randn(100,2)*0.75+ones(100,2);
randn(100,2)*0.5-ones(100,2)]; figure(1);
plot(X(:,1),X(:,2),'k.','MarkerSize',12);
title 'Randomly Generated Data'; opts = statset('Display','final');
[idx,C] = kmeans(X,2,'Distance','cityblock','Replicates',5,'Options',opts); %这里可以改聚类数量 figure(2);
plot(X(idx==1,1),X(idx==1,2),'r.','MarkerSize',12)
hold on
plot(X(idx==2,1),X(idx==2,2),'b.','MarkerSize',12)
plot(C(:,1),C(:,2),'kx','MarkerSize',15,'LineWidth',3) %标记聚类中心
legend('Cluster 1','Cluster 2','Centroids','Location','NW')
title 'Cluster Assignments and Centroids'
hold off
kmeans


[matlab] 23.matlab自带kmeans函数 实现聚类的更多相关文章
- matlab学习-使用自带的函数
>> %定义矩阵求最大值>> a=[1 7 3;6 2 9];>> A=max(a);>> a a = 1 7 3 6 2 9 >> A A ...
- MATLAB实现最优低通滤波器的函数
MATLAB实现最优低通滤波器的函数 % Fs --Data rate % Fpass --pass band % Fstop --Cutoff frequencies % Apass ...
- 数学建模及机器学习算法(一):聚类-kmeans(Python及MATLAB实现,包括k值选取与聚类效果评估)
一.聚类的概念 聚类分析是在数据中发现数据对象之间的关系,将数据进行分组,组内的相似性越大,组间的差别越大,则聚类效果越好.我们事先并不知道数据的正确结果(类标),通过聚类算法来发现和挖掘数据本身的结 ...
- [转]matlab语言中的assert断言函数
MATLAB语言没有系统的断言函数,但有错误报告函数 error 和 warning.由于要求对参数的保护,需要对输入参数或处理过程中的一些状态进行判断,判断程序能否/是否需要继续执行.在matlab ...
- 【matlab】MATLAB程序调试方法和过程
3.8 MATLAB程序的调试和优化 在MATLAB的程序调试过程中,不仅要求程序能够满足设计者的设计需求,而且还要求程序调试能够优化程序的性能,这样使得程序调试有时比程序设计更为复杂.MATLAB ...
- Easyui中 alert 带回调函数的 消息框
带回调函数的 消息框: $.messager.alert({ title:'消息', msg:'电话号码 只能是数字!', icon: 'info', width: 300, top:200 , // ...
- 定时器(setTimeout/setInterval)调用带参函数失效解决方法
也许你曾碰到过这样的问题,不管是setInterval()还是setTimeout(),当code参数里放一个带参函数时,定时器都会失效,看下面这个例子: function test(str){ al ...
- 第7.23节 Python使用property函数定义属性简化属性访问的代码实现
第7.23节 Python使用property函数定义属性简化属性访问的代码实现 一. 背景 在本章前面章节中,我们介绍了类相关的知识,并举例进行了说明,在这些例子中会定义一些形如 ...
- Python实现kMeans(k均值聚类)
Python实现kMeans(k均值聚类) 运行环境 Pyhton3 numpy(科学计算包) matplotlib(画图所需,不画图可不必) 计算过程 st=>start: 开始 e=> ...
随机推荐
- python中的tcp
目录 TCP简介 TCP介绍 TCP特点 TCP与UDP的不同点 udp通信模型 TCP通信模型 tcp客户端 tcp服务器 tcp注意点 TCP简介 TCP介绍 TCP协议,传输控制协议(英语:Tr ...
- SaaS技术栈的走势
本地部署时代 在软件还是“本地部署(on-premise)”的时候,SaaS的版图被大型玩家把持着,几乎所有的垂直领域(营销.支持.销售.人力)都被微软.SAP等大公司的解决方案占据.那时候的用户并没 ...
- Docker多步构建更小的Java镜像
译者按: 最新版Docker将支持多步构建(Multi-stage build),这样使用单个Dockerfile就可以定义多个中间镜像用于构建,测试以及发布等多个步骤,并且有效减小最终镜像的大小. ...
- viewer.js 视图预览demo
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8&quo ...
- 07-HTML-内嵌标签
<html> <head> <title>内嵌标签学习</title> <meta charset="utf-8"/> ...
- Django下自定义标签和过滤器
---恢复内容开始--- 第一步:确保setting中的INSTALL_APPS配置当前的app,要不然Django无法找到自定义的simple_tag. 第二步:在app中创建templatetag ...
- js-new、object.create、bind的模拟实现【转载备忘】
//创建Person构造函数,参数为name,age function Person(name,age){ this.name = name; this.age = age; } function _ ...
- 腾讯的产品思维 VS 阿里的终局思维
从成立到借壳上市,有赞用了5年多时间.这期间,它有好几次机会死掉,有很多的理由活不到今天,白鸦曾经说,每一次度过难关最关键都是靠团队的力量.谢天谢地,它活了下来. 那么,这个在To B领域敢打敢拼的团 ...
- 详解LSTM
https://blog.csdn.net/class_brick/article/details/79311148 今天的内容有: LSTM 思路 LSTM 的前向计算 LSTM 的反向传播 关于调 ...
- 区块链:创建简单的HelloWorld-WebDApp
Node.js 一个建立在Chrome的JavaScript运行环境上的平台,用以容易地建立快速而可扩展的网络应用:下载地址:https://nodejs.org/en/ Turffle 以太坊(Et ...