[matlab] 23.matlab自带kmeans函数 实现聚类
clc,clear all;
point=[1.40000000000000,0.200000000000000;1.40000000000000,0.200000000000000;1.30000000000000,0.200000000000000;1.50000000000000,0.200000000000000;1.40000000000000,0.200000000000000;1.70000000000000,0.400000000000000;1.40000000000000,0.300000000000000;1.50000000000000,0.200000000000000;1.40000000000000,0.200000000000000;1.50000000000000,0.100000000000000;1.50000000000000,0.200000000000000;1.60000000000000,0.200000000000000;1.40000000000000,0.100000000000000;1.10000000000000,0.100000000000000;1.20000000000000,0.200000000000000;1.50000000000000,0.400000000000000;1.30000000000000,0.400000000000000;1.40000000000000,0.300000000000000;1.70000000000000,0.300000000000000;1.50000000000000,0.300000000000000;1.70000000000000,0.200000000000000;1.50000000000000,0.400000000000000;1,0.200000000000000;1.70000000000000,0.500000000000000;1.90000000000000,0.200000000000000;1.60000000000000,0.200000000000000;1.60000000000000,0.400000000000000;1.50000000000000,0.200000000000000;1.40000000000000,0.200000000000000;1.60000000000000,0.200000000000000;1.60000000000000,0.200000000000000;1.50000000000000,0.400000000000000;1.50000000000000,0.100000000000000;1.40000000000000,0.200000000000000;1.50000000000000,0.200000000000000;1.20000000000000,0.200000000000000;1.30000000000000,0.200000000000000;1.40000000000000,0.100000000000000;1.30000000000000,0.200000000000000;1.50000000000000,0.200000000000000;1.30000000000000,0.300000000000000;1.30000000000000,0.300000000000000;1.30000000000000,0.200000000000000;1.60000000000000,0.600000000000000;1.90000000000000,0.400000000000000;1.40000000000000,0.300000000000000;1.60000000000000,0.200000000000000;1.40000000000000,0.200000000000000;1.50000000000000,0.200000000000000;1.40000000000000,0.200000000000000;4.70000000000000,1.40000000000000;4.50000000000000,1.50000000000000;4.90000000000000,1.50000000000000;4,1.30000000000000;4.60000000000000,1.50000000000000;4.50000000000000,1.30000000000000;4.70000000000000,1.60000000000000;3.30000000000000,1;4.60000000000000,1.30000000000000;3.90000000000000,1.40000000000000;3.50000000000000,1;4.20000000000000,1.50000000000000;4,1;4.70000000000000,1.40000000000000;3.60000000000000,1.30000000000000;4.40000000000000,1.40000000000000;4.50000000000000,1.50000000000000;4.10000000000000,1;4.50000000000000,1.50000000000000;3.90000000000000,1.10000000000000;4.80000000000000,1.80000000000000;4,1.30000000000000;4.90000000000000,1.50000000000000;4.70000000000000,1.20000000000000;4.30000000000000,1.30000000000000;4.40000000000000,1.40000000000000;4.80000000000000,1.40000000000000;5,1.70000000000000;4.50000000000000,1.50000000000000;3.50000000000000,1;3.80000000000000,1.10000000000000;3.70000000000000,1;3.90000000000000,1.20000000000000;5.10000000000000,1.60000000000000;4.50000000000000,1.50000000000000;4.50000000000000,1.60000000000000;4.70000000000000,1.50000000000000;4.40000000000000,1.30000000000000;4.10000000000000,1.30000000000000;4,1.30000000000000;4.40000000000000,1.20000000000000;4.60000000000000,1.40000000000000;4,1.20000000000000;3.30000000000000,1;4.20000000000000,1.30000000000000;4.20000000000000,1.20000000000000;4.20000000000000,1.30000000000000;4.30000000000000,1.30000000000000;3,1.10000000000000;4.10000000000000,1.30000000000000;6,2.50000000000000;5.10000000000000,1.90000000000000;5.90000000000000,2.10000000000000;5.60000000000000,1.80000000000000;5.80000000000000,2.20000000000000;6.60000000000000,2.10000000000000;4.50000000000000,1.70000000000000;6.30000000000000,1.80000000000000;5.80000000000000,1.80000000000000;6.10000000000000,2.50000000000000;5.10000000000000,2;5.30000000000000,1.90000000000000;5.50000000000000,2.10000000000000;5,2;5.10000000000000,2.40000000000000;5.30000000000000,2.30000000000000;5.50000000000000,1.80000000000000;6.70000000000000,2.20000000000000;6.90000000000000,2.30000000000000;5,1.50000000000000;5.70000000000000,2.30000000000000;4.90000000000000,2;6.70000000000000,2;4.90000000000000,1.80000000000000;5.70000000000000,2.10000000000000;6,1.80000000000000;4.80000000000000,1.80000000000000;4.90000000000000,1.80000000000000;5.60000000000000,2.10000000000000;5.80000000000000,1.60000000000000;6.10000000000000,1.90000000000000;6.40000000000000,2;5.60000000000000,2.20000000000000;5.10000000000000,1.50000000000000;5.60000000000000,1.40000000000000;6.10000000000000,2.30000000000000;5.60000000000000,2.40000000000000;5.50000000000000,1.80000000000000;4.80000000000000,1.80000000000000;5.40000000000000,2.10000000000000;5.60000000000000,2.40000000000000;5.10000000000000,2.30000000000000;5.10000000000000,1.90000000000000;5.90000000000000,2.30000000000000;5.70000000000000,2.50000000000000;5.20000000000000,2.30000000000000;5,1.90000000000000;5.20000000000000,2;5.40000000000000,2.30000000000000;5.10000000000000,1.80000000000000]; figure;
plot(point(:,1),point(:,2),'ks','MarkerSize',5);
title 'Fisher''s Iris Data';
xlabel 'Petal Lengths (cm)';
ylabel 'Petal Widths (cm)'; rng(1); % For reproducibility
[idx,C] = kmeans(point,3); x1 = min(point(:,1)):0.01:max(point(:,1));
x2 = min(point(:,2)):0.01:max(point(:,2));
[x1G,x2G] = meshgrid(x1,x2);
XGrid = [x1G(:),x2G(:)]; % Defines a fine grid on the plot idx2Region = kmeans(XGrid,3,'MaxIter',1,'Start',C); figure;
gscatter(XGrid(:,1),XGrid(:,2),idx2Region,[0,0.75,0.75;0.75,0,0.75;0.75,0.75,0],'..');
hold on;
plot(point(:,1),point(:,2),'ks','MarkerSize',5);
title 'Fisher''s Iris Data';
xlabel 'Petal Lengths (cm)';
ylabel 'Petal Widths (cm)';
legend('Region 1','Region 2','Region 3','Data','Location','SouthEast');
hold off;
kmeans


rng default; % For reproducibility
X = [randn(100,2)*0.75+ones(100,2);
randn(100,2)*0.5-ones(100,2)]; figure(1);
plot(X(:,1),X(:,2),'k.','MarkerSize',12);
title 'Randomly Generated Data'; opts = statset('Display','final');
[idx,C] = kmeans(X,2,'Distance','cityblock','Replicates',5,'Options',opts); %这里可以改聚类数量 figure(2);
plot(X(idx==1,1),X(idx==1,2),'r.','MarkerSize',12)
hold on
plot(X(idx==2,1),X(idx==2,2),'b.','MarkerSize',12)
plot(C(:,1),C(:,2),'kx','MarkerSize',15,'LineWidth',3) %标记聚类中心
legend('Cluster 1','Cluster 2','Centroids','Location','NW')
title 'Cluster Assignments and Centroids'
hold off
kmeans


[matlab] 23.matlab自带kmeans函数 实现聚类的更多相关文章
- matlab学习-使用自带的函数
>> %定义矩阵求最大值>> a=[1 7 3;6 2 9];>> A=max(a);>> a a = 1 7 3 6 2 9 >> A A ...
- MATLAB实现最优低通滤波器的函数
MATLAB实现最优低通滤波器的函数 % Fs --Data rate % Fpass --pass band % Fstop --Cutoff frequencies % Apass ...
- 数学建模及机器学习算法(一):聚类-kmeans(Python及MATLAB实现,包括k值选取与聚类效果评估)
一.聚类的概念 聚类分析是在数据中发现数据对象之间的关系,将数据进行分组,组内的相似性越大,组间的差别越大,则聚类效果越好.我们事先并不知道数据的正确结果(类标),通过聚类算法来发现和挖掘数据本身的结 ...
- [转]matlab语言中的assert断言函数
MATLAB语言没有系统的断言函数,但有错误报告函数 error 和 warning.由于要求对参数的保护,需要对输入参数或处理过程中的一些状态进行判断,判断程序能否/是否需要继续执行.在matlab ...
- 【matlab】MATLAB程序调试方法和过程
3.8 MATLAB程序的调试和优化 在MATLAB的程序调试过程中,不仅要求程序能够满足设计者的设计需求,而且还要求程序调试能够优化程序的性能,这样使得程序调试有时比程序设计更为复杂.MATLAB ...
- Easyui中 alert 带回调函数的 消息框
带回调函数的 消息框: $.messager.alert({ title:'消息', msg:'电话号码 只能是数字!', icon: 'info', width: 300, top:200 , // ...
- 定时器(setTimeout/setInterval)调用带参函数失效解决方法
也许你曾碰到过这样的问题,不管是setInterval()还是setTimeout(),当code参数里放一个带参函数时,定时器都会失效,看下面这个例子: function test(str){ al ...
- 第7.23节 Python使用property函数定义属性简化属性访问的代码实现
第7.23节 Python使用property函数定义属性简化属性访问的代码实现 一. 背景 在本章前面章节中,我们介绍了类相关的知识,并举例进行了说明,在这些例子中会定义一些形如 ...
- Python实现kMeans(k均值聚类)
Python实现kMeans(k均值聚类) 运行环境 Pyhton3 numpy(科学计算包) matplotlib(画图所需,不画图可不必) 计算过程 st=>start: 开始 e=> ...
随机推荐
- Netty 系列一(核心组件和实例).
一.概念 早期的 Java API 只支持由本地系统套接字库提供所谓的阻塞函数来支持网络编程.由于是阻塞 I/O ,要管理多个并发客户端,需要为每个新的客户端Socket 创建一个 Thread .这 ...
- 老王带你走过 Kafka 入门教程
Apache Kafka是分布式发布-订阅消息系统,在 kafka官网上对 kafka 的定义:一个分布式发布-订阅消息传递系统. 它最初由LinkedIn公司开发. Linkedin于2010年贡献 ...
- 初学HTML-1
HTML:Hyper Text Markup Language的缩写 超文本标记语言,用来描述文本的语义,这些文本———超文本,也叫标签. 基本格式: <html> <head ...
- js求渐升数的第100位
我弟考了道数学竞赛题,问我能不能用代码算结果.. 题目是这样的 用 1.2.3.4.5 组合数字,然后排列大小,从小到大,求排在第100位的数值大小 function foo(chars) { ; i ...
- angular 拼接html 事件无效
主要是要引用$compile方法
- CSS单位【记录】
1.长度 2.角度 3.时间 4.分辨率 5.颜色 6.函数 7.生成内容 8.图像 9.数字 1.长度 <length>:数字和单位之间没有空格,0之后的长度单位是可选的 相对长度单位 ...
- [转]Javascript实现图片的预加载详解
下面的函数实现了一个我们想要的最基本的图片预加载效果 function preloadimages(arr){ var newimages=[] var arr=(typeof arr!=" ...
- loj#6030. 「雅礼集训 2017 Day1」矩阵(贪心 构造)
题意 链接 Sol 自己都不知道自己怎么做出来的系列 不难观察出几个性质: 最优策略一定是先把某一行弄黑,然后再用这一行去覆盖不是全黑的列 无解当且仅当无黑色.否则第一个黑色所在的行\(i\)可以先把 ...
- Android权限之动态权限
安卓系统的权限管理机制从API 23 (也就是Android 6.0 又叫做 Android M,)之后发生了比较大的改变,在一些比较危险的权限上要求必须申请动态权限,即使你在AndroidMainf ...
- SQL SERVER LINUX
以前在Linux平台上访问SQL Server时常用的方式有:http://www.freetds.org/https://sourceforge.net/projects/jtds/这方面的资料已经 ...