1. 分类数据可视化 - 分类散点图

stripplot( ) / swarmplot( )

sns.stripplot(x="day",y="total_bill",data=tips,jitter = True, size = 5, edgecolor = 'w',linewidth=1,marker = 'o')
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
% matplotlib inline sns.set_style("whitegrid")
sns.set_context("paper")
# 设置风格、尺度 import warnings
warnings.filterwarnings('ignore')
# 不发出警告
# 1、stripplot()
# 按照不同类别对样本数据进行分布散点图绘制 tips = sns.load_dataset("tips")
print(tips.head())
# 加载数据
print(tips['day'].value_counts())
sns.stripplot(x="day", # x → 设置分组统计字段
y="total_bill", # y → 数据分布统计字段
# 这里xy数据对调,将会使得散点图横向分布
data=tips, # data → 对应数据
jitter = True, # jitter → 当点数据重合较多时,用该参数做一些调整,也可以设置间距如:jitter = 0.1
size = 5, edgecolor = 'w',linewidth=1,marker = 'o' # 设置点的大小、描边颜色或宽度、点样式
)

1.1 stripplot()

hue参数可再分类

# 1、stripplot() 通过hue参数再分类

sns.stripplot(x="sex", y="total_bill", hue="day",
data=tips, jitter=True)

# 1、stripplot() 设置调色盘

sns.stripplot(x="sex", y="total_bill", hue="day",
data=tips, jitter=True,
palette="Set2", # 设置调色盘
dodge=True, # 是否拆分
)

# 1、stripplot() 筛选分类类别

print(tips['day'].value_counts())
# 查看day字段的唯一值 sns.stripplot(x="day", y="total_bill", data=tips,jitter = True,
order = ['Sat','Sun'])
# order → 筛选类别

1.2 swarmplot()分簇散点图

# 2、swarmplot()
# 分簇散点图 sns.swarmplot(x="total_bill", y="day", data=tips,
size = 5, edgecolor = 'w',linewidth=1,marker = 'o',
palette = 'Reds')
# 用法和stripplot类似

2. 分类数据可视化 - 分布图

boxplot( ) / violinplot( ) / lvplot( ) 

2.1 boxplot()箱型图

sns.boxplot(x="day", y="total_bill", data=tips,
linewidth = 2, # 线宽
width = 0.8, # 箱之间的间隔比例
fliersize = 3, # 异常点大小
palette = 'hls', # 设置调色板
whis = 1.5, # 设置IQR
notch = True, # 设置是否以中值做凹槽
order = ['Thur','Fri','Sat','Sun'], # 筛选类别
# 1、boxplot()
# 箱型图 sns.boxplot(x="day", y="total_bill", data=tips,
linewidth = 2, # 线宽
width = 0.8, # 箱之间的间隔比例
fliersize = 3, # 异常点大小
palette = 'hls', # 设置调色板
whis = 1.5, # 设置IQR
notch = True, # 设置是否以中值做凹槽
order = ['Thur','Fri','Sat','Sun'], # 筛选类别
)
# 绘制箱型图 sns.swarmplot(x="day", y="total_bill", data=tips,color ='k',size = 3,alpha = 0.8)
# 可以添加散点图

# 1、boxplot() 通过hue参数再分类

sns.boxplot(x="day", y="total_bill", data=tips,
hue = 'smoker', palette = 'Reds')
# 绘制箱型图 #sns.swarmplot(x="day", y="total_bill", data=tips,color ='k',size = 3,alpha = 0.8)
# 可以添加散点图

2.2 violinplot()小提琴图

sns.violinplot(x="day", y="total_bill", data=tips,
linewidth = 2, # 线宽
width = 0.8, # 箱之间的间隔比例
palette = 'hls', # 设置调色板
order = ['Thur','Fri','Sat','Sun'], # 筛选类别
scale = 'area', # 测度小提琴图的宽度:area-面积相同,count-按照样本数量决定宽度,width-宽度一样
gridsize = 50, # 设置小提琴图边线的平滑度,越高越平滑
inner = 'box', # 设置内部显示类型 → “box”, “quartile”, “point”, “stick”, None
#bw = 0.8 # 控制拟合程度,一般可以不设置
)
# 2、violinplot()  小提琴图

sns.violinplot(x="day", y="total_bill", data=tips,
linewidth = 2, # 线宽
width = 0.8, # 箱之间的间隔比例
palette = 'hls', # 设置调色板
order = ['Thur','Fri','Sat','Sun'], # 筛选类别
scale = 'area', # 测度小提琴图的宽度:area-面积相同,count-按照样本数量决定宽度,width-宽度一样
gridsize = 50, # 设置小提琴图边线的平滑度,越高越平滑
inner = 'box', # 设置内部显示类型 → “box”, “quartile”, “point”, “stick”, None
#bw = 0.8 # 控制拟合程度,一般可以不设置
)
# 用法和boxplot类似

# 2、violinplot() 通过hue参数再分类

sns.violinplot(x="day", y="total_bill", data=tips,
hue = 'smoker', palette="muted",
split=True, # 设置是否拆分小提琴图
inner="quartile")

sns.violinplot()+ sns.swarmplot()小提琴图结合散点图
# 2、violinplot()  结合散点图

sns.violinplot(x="day", y="total_bill", data=tips, palette = 'hls', inner = None)
sns.swarmplot(x="day", y="total_bill", data=tips, color="w", alpha=.5)
# 插入散点图

2.3 lvplot() LV图表

sns.lvplot(x="day", y="total_bill", data=tips, palette="mako",
#hue = 'smoker',
width = 0.8, # 箱之间间隔比例
linewidth = 12,
scale = 'area', # 设置框的大小 → “linear”、“exonential”、“area”
k_depth = 'proportion', # 设置框的数量 → “proportion”、“tukey”、“trustworthy”
)
# 3、lvplot()  LV图表

sns.lvplot(x="day", y="total_bill", data=tips, palette="mako",
#hue = 'smoker',
width = 0.8, # 箱之间间隔比例
linewidth = 12,
scale = 'area', # 设置框的大小 → “linear”、“exonential”、“area”
k_depth = 'proportion', # 设置框的数量 → “proportion”、“tukey”、“trustworthy”
)
# 绘制LV图 sns.swarmplot(x="day", y="total_bill", data=tips,color ='k',size = 3,alpha = 0.8)
# 可以添加散点图

3. 分类数据可视化 - 统计图

barplot( ) / countplot( ) / pointplot( )

3.1 barplot()柱状图

sns.barplot(x="sex", y="survived", hue="class", data=titanic,
palette = 'hls',
order = ['male','female'], # 筛选类别
capsize = 0.05, # 误差线横向延伸宽度
saturation=.8, # 颜色饱和度
errcolor = 'gray',errwidth = 2, # 误差线颜色,宽度
ci = 'sd' # 置信区间误差 → 0-100内值、'sd'、None
)
# 1、barplot()
# 柱状图 - 置信区间估计
# 置信区间:样本均值 + 抽样误差 titanic = sns.load_dataset("titanic")
print(titanic.head())
print('-----')
# 加载数据

sns.barplot(x="sex", y="survived", hue="class", data=titanic,
palette = 'hls',
order = ['male','female'], # 筛选类别
capsize = 0.05, # 误差线横向延伸宽度
saturation=.8, # 颜色饱和度
errcolor = 'gray',errwidth = 2, # 误差线颜色,宽度
ci = 'sd' # 置信区间误差 → 0-100内值、'sd'、None
)

print(titanic.groupby(['sex','class']).mean()['survived'])
print(titanic.groupby(['sex','class']).std()['survived'])
# 计算数据

# 1、barplot()
# 柱状图 - 置信区间估计 sns.barplot(x="day", y="total_bill", hue="sex", data=tips,
palette = 'Blues',edgecolor = 'w')
tips.groupby(['day','sex']).mean()
# 计算数据

# 1、barplot()
# 柱状图 - 置信区间估计 crashes = sns.load_dataset("car_crashes").sort_values("total", ascending=False)
print(crashes.head())
# 加载数据 f, ax = plt.subplots(figsize=(6, 15))
# 创建图表 sns.set_color_codes("pastel")
sns.barplot(x="total", y="abbrev", data=crashes,
label="Total", color="b",edgecolor = 'w')
# 设置第一个柱状图 sns.set_color_codes("muted")
sns.barplot(x="alcohol", y="abbrev", data=crashes,
label="Alcohol-involved", color="b",edgecolor = 'w')
# 设置第二个柱状图 ax.legend(ncol=2, loc="lower right")
sns.despine(left=True, bottom=True)

3.2 countplot()计数柱状图

sns.countplot(x="class", hue="who", data=titanic,palette = 'magma')
# 2、countplot()  计数柱状图

sns.countplot(x="class", hue="who", data=titanic,palette = 'magma')
#sns.countplot(y="class", hue="who", data=titanic,palette = 'magma')
# x/y → 以x或者y轴绘图(横向,竖向)
# 用法和barplot相似

3.3 pointplot()折线图

# 3、pointplot()
# 折线图 - 置信区间估计 sns.pointplot(x="time", y="total_bill", hue = 'smoker',data=tips,
palette = 'hls',
dodge = True, # 设置点是否分开
join = True, # 是否连线
markers=["o", "x"], linestyles=["-", "--"], # 设置点样式、线型
)
tips.groupby(['time','smoker']).mean()['total_bill']
# 计算数据
# # 用法和barplot相似

Python图表数据可视化Seaborn:2. 分类数据可视化-分类散点图|分布图(箱型图|小提琴图|LV图表)|统计图(柱状图|折线图)的更多相关文章

  1. seaborn分类数据可视化:散点图|箱型图|小提琴图|lv图|柱状图|折线图

    一.散点图stripplot( ) 与swarmplot() 1.分类散点图stripplot( ) 用法stripplot(x=None, y=None, hue=None, data=None, ...

  2. java利用JFreeChart实现各种数据统计图(柱形图,饼图,折线图)

    最近在做数据挖掘的课程设计,需要将数据分析的结果很直观的展现给用户,这就要用到数据统计图,要实现这个功能就需要几个第三方包了: 1.       jfreechart-1.0.13.jar 2.    ...

  3. java实现各种数据统计图(柱形图,饼图,折线图)

    近期在做数据挖掘的课程设计,须要将数据分析的结果非常直观的展现给用户,这就要用到数据统计图,要实现这个功能就须要几个第三方包了: 1.       jfreechart-1.0.13.jar 2.   ...

  4. java代码实现highchart与数据库数据结合完整案例分析(二)---折线图

    作者原创:未经博主允许不许转载 在上一篇的博客中,展示和分析了如何做一个饼状图,有疑问可以参考上一篇博客. 现在分析和展示折线图的绘制和案例分析, 先展示效果图: 与饼状图不同的是,折线图展现更多的数 ...

  5. 报表应用系列——图表JFreeChart: 第 4 章 折线图

    双击代码全选 1 2 3 4 5 DefaultCategoryDataset dataset = new DefaultCategoryDataset(); dataset.addValue(100 ...

  6. Python图表数据可视化Seaborn:3. 线性关系数据| 时间线图表| 热图

    1. 线性关系数据可视化 lmplot( ) import numpy as np import pandas as pd import matplotlib.pyplot as plt import ...

  7. Python图表数据可视化Seaborn:1. 风格| 分布数据可视化-直方图| 密度图| 散点图

    conda  install seaborn  是安装到jupyter那个环境的 1. 整体风格设置 对图表整体颜色.比例等进行风格设置,包括颜色色板等调用系统风格进行数据可视化 set() / se ...

  8. seaborn分类数据可视化

    转载:https://cloud.tencent.com/developer/article/1178368 seaborn针对分类型的数据有专门的可视化函数,这些函数可大致分为三种: 分类数据散点图 ...

  9. seaborn教程4——分类数据可视化

    https://segmentfault.com/a/1190000015310299 Seaborn学习大纲 seaborn的学习内容主要包含以下几个部分: 风格管理 绘图风格设置 颜色风格设置 绘 ...

随机推荐

  1. [C]C语言中的指针和内存泄漏几种情况

    引言 原文地址:http://www.cnblogs.com/archimedes/p/c-point-memory-leak.html,转载请注明源地址. 对于任何使用C语言的人,如果问他们C语言的 ...

  2. PHP 转义

    函数名 释义 介绍 htmlspecialchars 将与.单双引号.大于和小于号化成HTML格式 &转成&"转成"' 转成'<转成<>转成> ...

  3. Confluence 6 高级性能诊断

    请在你的系统服务请求中包括下面所有的信息,如果可能的话,你也可以在请求中包括你认为最有可能出现的问题.这样的话,可以避免我们进一步对你系统的问题进行询问. 系统信息 Confluence 服务器 你系 ...

  4. Confluence 6 SQL 异常的问题解决

    如果你得到了与下面显示内容类似的信息话,那么你最好考虑修改 Confluence 的日志级别输出更多的信息.如果你考虑通过 Atlassian support 获得帮助,那么这些详细的错误信息能够更好 ...

  5. css样式之补充。。。

    css常用的一些属性: 1.去掉下划线 :text-decoration:none ;2.加上下划线: text-decoration: underline; 3.调整文本和图片的位置(也就是设置元素 ...

  6. 【sqli-labs】Less11~Less16

    学习sqli-labs的笔记,前面的笔记内容比较详细.后面的只记录关键点了. Less11: POST注入, 有回显,有错误提示 从11题起是POST注入,发现有两个输入框.用firefox的F12查 ...

  7. favicon.ico--网站标题小图片二三事

    前言: 什么是favicon? 直接用图说话:这个就是favicon favicon.ico 是一种格式,一般用于网页地址栏前或者在标签上以缩略方式显示网站标志,也可以拖曳favicon到桌面以建立到 ...

  8. C++ Primer 笔记——语句

    switch 内部的变量定义 1.因为C++语言规定,不允许跨过变量的初始化语句直接跳转到该变量作用域内的另一位置,所以有了如下情况: bool bsuccess = false; switch (b ...

  9. linux:安装并使用mongo

    1.下载mongo:  curl -O https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-3.0.6.tgz 2.解压: tar -zxvf ...

  10. gotty---用来作为k8s的web terminal,通过参数读取指定pod的日志输出

    不要重复造轮子,我觉得这个方案比较适合现在的情况. 我们知道,如果手工查看k8s里指定pod的日志输出,一般的方案如下: kubectl logs -f -n [namespace] [pod] -c ...