Python图表数据可视化Seaborn:2. 分类数据可视化-分类散点图|分布图(箱型图|小提琴图|LV图表)|统计图(柱状图|折线图)
1. 分类数据可视化 - 分类散点图
stripplot( ) / swarmplot( )
sns.stripplot(x="day",y="total_bill",data=tips,jitter = True, size = 5, edgecolor = 'w',linewidth=1,marker = 'o')
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
% matplotlib inline sns.set_style("whitegrid")
sns.set_context("paper")
# 设置风格、尺度 import warnings
warnings.filterwarnings('ignore')
# 不发出警告
# 1、stripplot()
# 按照不同类别对样本数据进行分布散点图绘制 tips = sns.load_dataset("tips")
print(tips.head())
# 加载数据
print(tips['day'].value_counts())
sns.stripplot(x="day", # x → 设置分组统计字段
y="total_bill", # y → 数据分布统计字段
# 这里xy数据对调,将会使得散点图横向分布
data=tips, # data → 对应数据
jitter = True, # jitter → 当点数据重合较多时,用该参数做一些调整,也可以设置间距如:jitter = 0.1
size = 5, edgecolor = 'w',linewidth=1,marker = 'o' # 设置点的大小、描边颜色或宽度、点样式
)
1.1 stripplot()
hue参数可再分类
# 1、stripplot() 通过hue参数再分类 sns.stripplot(x="sex", y="total_bill", hue="day",
data=tips, jitter=True)
# 1、stripplot() 设置调色盘 sns.stripplot(x="sex", y="total_bill", hue="day",
data=tips, jitter=True,
palette="Set2", # 设置调色盘
dodge=True, # 是否拆分
)
# 1、stripplot() 筛选分类类别 print(tips['day'].value_counts())
# 查看day字段的唯一值 sns.stripplot(x="day", y="total_bill", data=tips,jitter = True,
order = ['Sat','Sun'])
# order → 筛选类别
1.2 swarmplot()分簇散点图
# 2、swarmplot()
# 分簇散点图 sns.swarmplot(x="total_bill", y="day", data=tips,
size = 5, edgecolor = 'w',linewidth=1,marker = 'o',
palette = 'Reds')
# 用法和stripplot类似
2. 分类数据可视化 - 分布图
boxplot( ) / violinplot( ) / lvplot( )
2.1 boxplot()箱型图
sns.boxplot(x="day", y="total_bill", data=tips,
linewidth = 2, # 线宽
width = 0.8, # 箱之间的间隔比例
fliersize = 3, # 异常点大小
palette = 'hls', # 设置调色板
whis = 1.5, # 设置IQR
notch = True, # 设置是否以中值做凹槽
order = ['Thur','Fri','Sat','Sun'], # 筛选类别
# 1、boxplot()
# 箱型图 sns.boxplot(x="day", y="total_bill", data=tips,
linewidth = 2, # 线宽
width = 0.8, # 箱之间的间隔比例
fliersize = 3, # 异常点大小
palette = 'hls', # 设置调色板
whis = 1.5, # 设置IQR
notch = True, # 设置是否以中值做凹槽
order = ['Thur','Fri','Sat','Sun'], # 筛选类别
)
# 绘制箱型图 sns.swarmplot(x="day", y="total_bill", data=tips,color ='k',size = 3,alpha = 0.8)
# 可以添加散点图
# 1、boxplot() 通过hue参数再分类 sns.boxplot(x="day", y="total_bill", data=tips,
hue = 'smoker', palette = 'Reds')
# 绘制箱型图 #sns.swarmplot(x="day", y="total_bill", data=tips,color ='k',size = 3,alpha = 0.8)
# 可以添加散点图
2.2 violinplot()小提琴图
sns.violinplot(x="day", y="total_bill", data=tips,
linewidth = 2, # 线宽
width = 0.8, # 箱之间的间隔比例
palette = 'hls', # 设置调色板
order = ['Thur','Fri','Sat','Sun'], # 筛选类别
scale = 'area', # 测度小提琴图的宽度:area-面积相同,count-按照样本数量决定宽度,width-宽度一样
gridsize = 50, # 设置小提琴图边线的平滑度,越高越平滑
inner = 'box', # 设置内部显示类型 → “box”, “quartile”, “point”, “stick”, None
#bw = 0.8 # 控制拟合程度,一般可以不设置
)
# 2、violinplot() 小提琴图 sns.violinplot(x="day", y="total_bill", data=tips,
linewidth = 2, # 线宽
width = 0.8, # 箱之间的间隔比例
palette = 'hls', # 设置调色板
order = ['Thur','Fri','Sat','Sun'], # 筛选类别
scale = 'area', # 测度小提琴图的宽度:area-面积相同,count-按照样本数量决定宽度,width-宽度一样
gridsize = 50, # 设置小提琴图边线的平滑度,越高越平滑
inner = 'box', # 设置内部显示类型 → “box”, “quartile”, “point”, “stick”, None
#bw = 0.8 # 控制拟合程度,一般可以不设置
)
# 用法和boxplot类似
# 2、violinplot() 通过hue参数再分类 sns.violinplot(x="day", y="total_bill", data=tips,
hue = 'smoker', palette="muted",
split=True, # 设置是否拆分小提琴图
inner="quartile")
sns.violinplot()+ sns.swarmplot()小提琴图结合散点图
# 2、violinplot() 结合散点图 sns.violinplot(x="day", y="total_bill", data=tips, palette = 'hls', inner = None)
sns.swarmplot(x="day", y="total_bill", data=tips, color="w", alpha=.5)
# 插入散点图
2.3 lvplot() LV图表
sns.lvplot(x="day", y="total_bill", data=tips, palette="mako",
#hue = 'smoker',
width = 0.8, # 箱之间间隔比例
linewidth = 12,
scale = 'area', # 设置框的大小 → “linear”、“exonential”、“area”
k_depth = 'proportion', # 设置框的数量 → “proportion”、“tukey”、“trustworthy”
)
# 3、lvplot() LV图表 sns.lvplot(x="day", y="total_bill", data=tips, palette="mako",
#hue = 'smoker',
width = 0.8, # 箱之间间隔比例
linewidth = 12,
scale = 'area', # 设置框的大小 → “linear”、“exonential”、“area”
k_depth = 'proportion', # 设置框的数量 → “proportion”、“tukey”、“trustworthy”
)
# 绘制LV图 sns.swarmplot(x="day", y="total_bill", data=tips,color ='k',size = 3,alpha = 0.8)
# 可以添加散点图
3. 分类数据可视化 - 统计图
barplot( ) / countplot( ) / pointplot( )
3.1 barplot()柱状图
sns.barplot(x="sex", y="survived", hue="class", data=titanic,
palette = 'hls',
order = ['male','female'], # 筛选类别
capsize = 0.05, # 误差线横向延伸宽度
saturation=.8, # 颜色饱和度
errcolor = 'gray',errwidth = 2, # 误差线颜色,宽度
ci = 'sd' # 置信区间误差 → 0-100内值、'sd'、None
)
# 1、barplot()
# 柱状图 - 置信区间估计
# 置信区间:样本均值 + 抽样误差 titanic = sns.load_dataset("titanic")
print(titanic.head())
print('-----')
# 加载数据
sns.barplot(x="sex", y="survived", hue="class", data=titanic,
palette = 'hls',
order = ['male','female'], # 筛选类别
capsize = 0.05, # 误差线横向延伸宽度
saturation=.8, # 颜色饱和度
errcolor = 'gray',errwidth = 2, # 误差线颜色,宽度
ci = 'sd' # 置信区间误差 → 0-100内值、'sd'、None
)
print(titanic.groupby(['sex','class']).mean()['survived'])
print(titanic.groupby(['sex','class']).std()['survived'])
# 计算数据
# 1、barplot()
# 柱状图 - 置信区间估计 sns.barplot(x="day", y="total_bill", hue="sex", data=tips,
palette = 'Blues',edgecolor = 'w')
tips.groupby(['day','sex']).mean()
# 计算数据
# 1、barplot()
# 柱状图 - 置信区间估计 crashes = sns.load_dataset("car_crashes").sort_values("total", ascending=False)
print(crashes.head())
# 加载数据 f, ax = plt.subplots(figsize=(6, 15))
# 创建图表 sns.set_color_codes("pastel")
sns.barplot(x="total", y="abbrev", data=crashes,
label="Total", color="b",edgecolor = 'w')
# 设置第一个柱状图 sns.set_color_codes("muted")
sns.barplot(x="alcohol", y="abbrev", data=crashes,
label="Alcohol-involved", color="b",edgecolor = 'w')
# 设置第二个柱状图 ax.legend(ncol=2, loc="lower right")
sns.despine(left=True, bottom=True)
3.2 countplot()计数柱状图
sns.countplot(x="class", hue="who", data=titanic,palette = 'magma')
# 2、countplot() 计数柱状图 sns.countplot(x="class", hue="who", data=titanic,palette = 'magma')
#sns.countplot(y="class", hue="who", data=titanic,palette = 'magma')
# x/y → 以x或者y轴绘图(横向,竖向)
# 用法和barplot相似
3.3 pointplot()折线图
# 3、pointplot()
# 折线图 - 置信区间估计 sns.pointplot(x="time", y="total_bill", hue = 'smoker',data=tips,
palette = 'hls',
dodge = True, # 设置点是否分开
join = True, # 是否连线
markers=["o", "x"], linestyles=["-", "--"], # 设置点样式、线型
)
tips.groupby(['time','smoker']).mean()['total_bill']
# 计算数据
# # 用法和barplot相似
Python图表数据可视化Seaborn:2. 分类数据可视化-分类散点图|分布图(箱型图|小提琴图|LV图表)|统计图(柱状图|折线图)的更多相关文章
- seaborn分类数据可视化:散点图|箱型图|小提琴图|lv图|柱状图|折线图
一.散点图stripplot( ) 与swarmplot() 1.分类散点图stripplot( ) 用法stripplot(x=None, y=None, hue=None, data=None, ...
- java利用JFreeChart实现各种数据统计图(柱形图,饼图,折线图)
最近在做数据挖掘的课程设计,需要将数据分析的结果很直观的展现给用户,这就要用到数据统计图,要实现这个功能就需要几个第三方包了: 1. jfreechart-1.0.13.jar 2. ...
- java实现各种数据统计图(柱形图,饼图,折线图)
近期在做数据挖掘的课程设计,须要将数据分析的结果非常直观的展现给用户,这就要用到数据统计图,要实现这个功能就须要几个第三方包了: 1. jfreechart-1.0.13.jar 2. ...
- java代码实现highchart与数据库数据结合完整案例分析(二)---折线图
作者原创:未经博主允许不许转载 在上一篇的博客中,展示和分析了如何做一个饼状图,有疑问可以参考上一篇博客. 现在分析和展示折线图的绘制和案例分析, 先展示效果图: 与饼状图不同的是,折线图展现更多的数 ...
- 报表应用系列——图表JFreeChart: 第 4 章 折线图
双击代码全选 1 2 3 4 5 DefaultCategoryDataset dataset = new DefaultCategoryDataset(); dataset.addValue(100 ...
- Python图表数据可视化Seaborn:3. 线性关系数据| 时间线图表| 热图
1. 线性关系数据可视化 lmplot( ) import numpy as np import pandas as pd import matplotlib.pyplot as plt import ...
- Python图表数据可视化Seaborn:1. 风格| 分布数据可视化-直方图| 密度图| 散点图
conda install seaborn 是安装到jupyter那个环境的 1. 整体风格设置 对图表整体颜色.比例等进行风格设置,包括颜色色板等调用系统风格进行数据可视化 set() / se ...
- seaborn分类数据可视化
转载:https://cloud.tencent.com/developer/article/1178368 seaborn针对分类型的数据有专门的可视化函数,这些函数可大致分为三种: 分类数据散点图 ...
- seaborn教程4——分类数据可视化
https://segmentfault.com/a/1190000015310299 Seaborn学习大纲 seaborn的学习内容主要包含以下几个部分: 风格管理 绘图风格设置 颜色风格设置 绘 ...
随机推荐
- 随机生成游戏用户昵称(nodejs版本)(含机器人头像,金币等)
1 前言 有时需要生成随机的用户(或机器人)昵称,头像,金币等,但又不想太生硬,可以现在网上爬一些常见昵称到文本中,然后读取出来,随机使用即可. 2 代码 var nickNameArr = []; ...
- 一篇文章教你读懂UI绘制流程
最近有好多人问我Android没信心去深造了,找不到好的工作,其实我以一个他们进行回复,发现他们主要是内心比较浮躁,要知道技术行业永远缺少的是高手.建议先阅读浅谈Android发展趋势分析,在工作中, ...
- Confluence 6 如何配置快速导航的同时查找数量
进入后台后查看快速导航的启用和可以同时查找的数量. 然后进行通过单击右上角的编辑(Edit)按钮进行编辑. 对配置进行配置,启用快速查询和可以同时使用的最大查询数量. https://www.cwik ...
- Confluence 6 选择一个默认的语言
管理员可以设置应用到你 Confluence 站点所有空间的默认语言.请注意,一个独立的用户可以在他们自己的属性中选择他们独立的语言属性. 设定默认的语言 在 Confluence 站点中修改默认的语 ...
- json字符串和字典的区别补充
json字符串和字典的区别:json:(JavaScript Object Notation)的首字母缩写,字面的意思是(javascript对象表示法),这里说的json指的是类似于javascri ...
- 团队开发工具git常用命令
Git 常用命令 Git配置 git config --global user.name "storm" git config --global user.email " ...
- XSS-HTML&javaSkcript&CSS&jQuery&ajax-CSS
CSS 1.表单的处理 <style> table, td, th{ border:1px; solid green;} th{ background-color:green; color ...
- java获取当前时间精确到毫秒
转载:http://af8991.iteye.com/blog/1217672 import java.text.SimpleDateFormat; import java.util.Date; im ...
- AI学习吧-Redis操作-事务、订阅
事务 #首先启动redis服务端和客户端:#关于事务,数据库中的事务指的是逻辑上的一组操作,这组操作要么都执行成功要么不执行成功,出现异常会回滚到初始状态. 在代码中加入xxx,代码报错的话,不会执行 ...
- Java+selenium之WebDriver的cookie,等待等高级操作(五)
1. 操作cookie // 增加一个 name = "name",value="value" 的 cookie Cookie cookie = new Coo ...