Divisibility

我们考虑删数字

首先我们可以发现有一类数很特殊就是大于 n / 2的素数, 因为这些素数的贡献只有1, 并且在n大的时候,

这些素数的个数不是很少, 我们可以最后用这些数去调整, 并且删掉一个数的时候删掉的是它的因子个数,

所以可以用素数去控制最后的数量。当n小的时候直接状压枚举。

#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define PLL pair<LL, LL>
#define PLI pair<LL, int>
#define PII pair<int, int>
#define SZ(x) ((int)x.size())
#define ull unsigned long long using namespace std; const int N = 1e6 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9 + ;
const double eps = 1e-;
const double PI = acos(-); int n;
LL k;
int rel[N];
bool vis[N];
int now;
vector<int> vc;
set<int> Set;
vector<int> fac[N]; int main() {
scanf("%d%lld", &n, &k);
if(n <= ) {
vector<int> ret;
for(int S = ; S < ( << n); S++) {
ret.clear();
for(int i = ; i < n; i++)
if(S >> i & ) ret.push_back(i + );
int cnt = ;
for(int i = ; i < SZ(ret); i++) {
for(int j = i + ; j < SZ(ret); j++) {
if(ret[j] % ret[i] == ) {
cnt++;
}
}
}
if(cnt == k) {
puts("Yes");
printf("%d\n", SZ(ret));
for(auto& t : ret) printf("%d ", t);
puts("");
return ;
}
}
puts("No");
} else {
for(int i = ; i <= n; i++) {
for(int j = i + i; j <= n; j += i)
vis[j] = true;
}
for(int i = ; i <= n; i++) Set.insert(i);
for(int i = ; i <= n; i++) {
for(int j = i + i; j <= n; j += i) {
now++;
rel[j]++;
rel[i]++;
fac[j].push_back(i);
}
}
if(now < k) {
puts("No");
return ;
}
if(now == k) {
puts("Yes");
printf("%d\n", SZ(Set));
for(auto& t : Set) printf("%d ", t);
puts("");
return ;
}
for(int i = n / + ; i <= n; i++) {
if(!vis[i]) {
vc.push_back(i), now--, Set.erase(i);
rel[]--;
if(now == k) {
puts("Yes");
printf("%d\n", SZ(Set));
for(auto& t : Set) printf("%d ", t);
puts("");
return ;
}
}
}
while(now > k) {
int v = *Set.rbegin();
if(rel[v] <= now - k) {
now -= rel[v];
Set.erase(v);
for(auto& t : fac[v]) rel[t]--;
} else {
int who = v;
for(auto& t : Set)
if(now - rel[t] <= k && rel[t] < rel[who]) who = t;
now -= rel[who];
Set.erase(who);
for(auto& t : fac[who]) rel[t]--;
while(now < k && SZ(vc)) {
now++;
Set.insert(vc.back());
vc.pop_back();
}
}
}
if(now == k) {
puts("Yes");
printf("%d\n", SZ(Set));
for(auto& t : Set) printf("%d ", t);
puts("");
return ;
} else {
puts("No");
}
}
return ;
} /*
*/

Codeforces 922F Divisibility 构造的更多相关文章

  1. Codeforces 922F Divisibility (构造 + 数论)

    题目链接  Divisibility 题意 给定$n$和$k$,构造一个集合$\left\{1, 2, 3, ..., n \right\}$的子集,使得在这个集合中恰好有$k$对正整数$(x, y) ...

  2. codeforces 1041 e 构造

    Codeforces 1041 E 构造题. 给出一种操作,对于一棵树,去掉它的一条边.那么这颗树被分成两个部分,两个部分的分别的最大值就是这次操作的答案. 现在给出一棵树所有操作的结果,问能不能构造 ...

  3. Codeforces 550C —— Divisibility by Eight——————【枚举 || dp】

     Divisibility by Eight time limit per test 2 seconds memory limit per test 256 megabytes input stand ...

  4. Codeforces - 474D - Flowers - 构造 - 简单dp

    https://codeforces.com/problemset/problem/474/D 这道题挺好的,思路是这样. 我们要找一个01串,其中0的段要被划分为若干个连续k的0. 我们设想一个长度 ...

  5. [math] Codeforces 597A Divisibility

    题目:http://codeforces.com/problemset/problem/597/A Divisibility time limit per test 1 second memory l ...

  6. Codeforces Global Round 8 B. Codeforces Subsequences(构造)

    题目链接:https://codeforces.com/contest/1368/problem/B 题意 构造最短的至少含有 $k$ 个 $codeforces$ 子序列的字符串. 题解 如下表: ...

  7. Codeforces 410C.Team[构造]

    C. Team time limit per test 1 second memory limit per test 256 megabytes input standard input output ...

  8. Codeforces 716C[数论][构造]

    /* CF傻逼构造题 某人要经过n回合游戏,初始分值是2,等级为1. 每次有两种操作 1.无条件,分值加上自己的等级数. 2.当目前的数字是完全平方数并且该数字开方以后是等级数加1的整数倍,那么可以将 ...

  9. codeforces 630J Divisibility

    J. Divisibility time limit per test 0.5 seconds memory limit per test 64 megabytes input standard in ...

随机推荐

  1. php OpenSSL 加解密

    2018-1-6 17:10:19 星期六 $data = '123456'; $openssl_method = 'AES-256-CBC'; $openssl_iv_length = openss ...

  2. 配置国内 Docker Registry Mirror

    由于国内特殊的网络环境,往往我们从Docker Hub中拉取镜像并不能成功,而且速度特别慢. 那么我们可以给Docker配置一个国内的registry mirror,当我们需要的镜像在mirror中则 ...

  3. Uva 11178 Morley定理

    题意: 给你三角形三个点, 定理是 三个内角的三等分线相交得出 DEF三点, 三角新 DFE是等边三角形 然后要你输出 D E F 的坐标 思路 : 求出三个内角,对于D 相当于 BC向量逆时针旋转, ...

  4. 所有ORM操作 (第二版)

    ####################################################################### # PUBLIC METHODS THAT ALTER ...

  5. Codeforces 1117G Recursive Queries [线段树]

    Codeforces 洛谷:咕咕咕 思路 设\(L_i,R_i\)为\(i\)左右第一个大于它的位置. 对于每一个询问\(l,r\),考虑区间每一个位置的贡献就是\(\min(r,R_i-1)-\ma ...

  6. VBS计时器

    用VBS实现一个以分钟为单位的计时器: rem msgbox now 'now is the system para msgbox "Timer",,"CreatedBy ...

  7. vue -webpack.dev.config.js模拟后台数据接口

    在const portfinder = require('portfinder')后面添加 const express = require('express') const app = express ...

  8. windows Sever 2012下Oracle 12c安装配置方法图文教程

    windows Sever 2012下Oracle 12c安装配置方法图文教程 Oracle 12c安装配置方法图文教程,具体内容如下 1.我们开启虚拟机 2.Windows Sever 2012启动 ...

  9. 关闭VirtualBox虚拟机的时钟同步

    原文链接:关闭VirtualBox虚拟机的时钟同步 在VirtualBox的虚拟机上默认虚拟机的时间是会和物理机同步的,但可以通过下面的命令来关闭 1. 首先查看虚拟机列表 VBoxManage li ...

  10. Linux下vsftpd的安装,Java上传文件实现。

    首先我们需要查看是否已经安装vsftpd,输入命令 :vsftpd  -v.如果出现以下信息,那么就说明已经安装vsftpd 如果没有安装,那么输入命令   : yum  install vsftpd ...