池化层定义在 tensorflow/python/layers/pooling.py.

有最大值池化和均值池化。

1、tf.layers.max_pooling2d

max_pooling2d(
inputs,
pool_size,
strides,
padding='valid',
data_format='channels_last',
name=None
)
  • inputs: 进行池化的数据。
  • pool_size: 池化的核大小(pool_height, pool_width),如[3,3]. 如果长宽相等,也可以直接设置为一个数,如pool_size=3.
  • strides: 池化的滑动步长。可以设置为[1,1]这样的两个整数. 也可以直接设置为一个数,如strides=2
  • padding: 边缘填充,'same' 和'valid‘选其一。默认为valid
  • data_format: 输入数据格式,默认为channels_last ,即 (batch, height, width, channels),也可以设置为channels_first 对应 (batch, channels, height, width).
  • name: 层的名字。

例:

pool1=tf.layers.max_pooling2d(inputs=x, pool_size=[2, 2], strides=2)

一般是放在卷积层之后,如:

conv=tf.layers.conv2d(
inputs=x,
filters=32,
kernel_size=[5, 5],
padding="same",
activation=tf.nn.relu)
pool=tf.layers.max_pooling2d(inputs=conv, pool_size=[2, 2], strides=2)

2.tf.layers.average_pooling2d

average_pooling2d(
inputs,
pool_size,
strides,
padding='valid',
data_format='channels_last',
name=None
)

参数和前面的最大值池化一样。

全连接dense层定义在 tensorflow/python/layers/core.py.

3、tf.layers.dense

dense(
inputs,
units,
activation=None,
use_bias=True,
kernel_initializer=None,
bias_initializer=tf.zeros_initializer(),
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
trainable=True,
name=None,
reuse=None
)
  • inputs: 输入数据,2维tensor.
  • units: 该层的神经单元结点数。
  • activation: 激活函数.
  • use_bias: Boolean型,是否使用偏置项.
  • kernel_initializer: 卷积核的初始化器.
  • bias_initializer: 偏置项的初始化器,默认初始化为0.
  • kernel_regularizer: 卷积核化的正则化,可选.
  • bias_regularizer: 偏置项的正则化,可选.
  • activity_regularizer: 输出的正则化函数.
  • trainable: Boolean型,表明该层的参数是否参与训练。如果为真则变量加入到图集合中 GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
  • name: 层的名字.
  • reuse: Boolean型, 是否重复使用参数.

全连接层执行操作 outputs = activation(inputs.kernel + bias)

如果执行结果不想进行激活操作,则设置activation=None。

例:

#全连接层
dense1 = tf.layers.dense(inputs=pool3, units=1024, activation=tf.nn.relu)
dense2= tf.layers.dense(inputs=dense1, units=512, activation=tf.nn.relu)
logits= tf.layers.dense(inputs=dense2, units=10, activation=None)

也可以对全连接层的参数进行正则化约束:

dense1 = tf.layers.dense(inputs=pool3, units=1024, activation=tf.nn.relu,kernel_regularizer=tf.contrib.layers.l2_regularizer(0.003))

tensorflow 1.0 学习:池化层(pooling)和全连接层(dense)的更多相关文章

  1. CNN学习笔记:全连接层

    CNN学习笔记:全连接层 全连接层 全连接层在整个网络卷积神经网络中起到“分类器”的作用.如果说卷积层.池化层和激活函数等操作是将原始数据映射到隐层特征空间的话,全连接层则起到将学到的特征表示映射到样 ...

  2. 深度学习基础系列(十)| Global Average Pooling是否可以替代全连接层?

    Global Average Pooling(简称GAP,全局池化层)技术最早提出是在这篇论文(第3.2节)中,被认为是可以替代全连接层的一种新技术.在keras发布的经典模型中,可以看到不少模型甚至 ...

  3. Python3 卷积神经网络卷积层,池化层,全连接层前馈实现

    # -*- coding: utf-8 -*- """ Created on Sun Mar 4 09:21:41 2018 @author: markli " ...

  4. 全连接层(FC)与全局平均池化层(GAP)

    在卷积神经网络的最后,往往会出现一两层全连接层,全连接一般会把卷积输出的二维特征图转化成一维的一个向量,全连接层的每一个节点都与上一层每个节点连接,是把前一层的输出特征都综合起来,所以该层的权值参数是 ...

  5. tensorflow 1.0 学习:参数和特征的提取

    在tf中,参与训练的参数可用 tf.trainable_variables()提取出来,如: #取出所有参与训练的参数 params=tf.trainable_variables() print(&q ...

  6. tensorflow 1.0 学习:用CNN进行图像分类

    tensorflow升级到1.0之后,增加了一些高级模块: 如tf.layers, tf.metrics, 和tf.losses,使得代码稍微有些简化. 任务:花卉分类 版本:tensorflow 1 ...

  7. 深度学习Keras框架笔记之Dense类(标准的一维全连接层)

    深度学习Keras框架笔记之Dense类(标准的一维全连接层) 例: keras.layers.core.Dense(output_dim,init='glorot_uniform', activat ...

  8. 基于tensorflow使用全连接层函数实现多层神经网络并保存和读取模型

    使用之前那个格式写法到后面层数多的话会很乱,所以编写了一个函数创建层,这样看起来可读性高点也更方便整理后期修改维护 #全连接层函数 def fcn_layer( inputs, #输入数据 input ...

  9. fc全连接层的作用、卷积层的作用、pooling层、激活函数的作用

    fc:1.起到分类器的作用.对前层的特征进行一个加权和,(卷积层是将数据输入映射到隐层特征空间)将特征空间通过线性变换映射到样本标记空间(也就是label) 2.1*1卷积等价于fc:跟原featur ...

随机推荐

  1. python文件操作打开模式 r,w,a,r+,w+,a+ 区别辨析

    主要分成三大类: r 和 r+     "读"功能 r  只读 r+ 读写(先读后写) 辨析:对于r,只有读取功能,利用光标的移动,可以选择要读取的内容. 对于r+,同时具有读和写 ...

  2. Vue-箭头函数

    03-箭头函数   箭头函数 基本语法: ES6允许使用“箭头”(=>)定义函数 var f = a = > a //等同于 var f = function(a){ return a; ...

  3. jenkins 使用Git 报错:SSL certificate problem: self signed certificate in certificate chain

    在启动java的脚本上执行 增加参数: -Dorg.jenkinsci.plugins.gitclient.GitClient.untrustedSSL=true 即可!!

  4. 1002 A+B for Polynomials 可弃

    使用类似桶排序的计数方式来存储

  5. gensim自然语言处理

    参考代码 ChineseClean_demo1.py: # -*- coding:utf-8 -*- import xlrd import xlwt ''' python3.4 ''' # file ...

  6. 摘录<小王子>——[法]安东·圣埃克苏佩里

    四 大人们都喜欢数字.你要是向他们说起一个新朋友,他们提出的问题从来问不到点子上. 他们绝不会问:"他的嗓音怎么样?他喜欢什么游戏?比如,他喜欢搜集蝴蝶标本吗?" 他们总是问你:& ...

  7. LAPM 相关实验01

    目录 lab1 静态.动态资源的区别lab2 部署phpMyadminlab3 部署wordpresslab4 编译安装php-Xcache加速器lab5 fcgi实现lamp lab1 静态.动态资 ...

  8. IE兼容问题 动态生成的节点IE浏览器无法触发

    ie下click()不能操作文档中没有的节点,所以你可以在click()前添加下面的语句 document.body.appendChild( input ); input.style.display ...

  9. HTML和CSS初级前端面试题汇总(持续补充)

    1.浏览器内核 IE:trident Firefox:gecko Safari:webkit Opera:以前是presto,现在是Blink Chrome:Blink 2.HTML文件开头的DOCT ...

  10. 修改MariaDB 路径

    1.把mariadb服务停掉: service mariadb stop 2.把/var/lib/mysql整个目录复制到/work, sudo mkdir /work/data sudo cp -a ...