一文洞悉Python必备50种算法!资深大牛至少得掌握25种!
一、环境需求
二、怎样使用
三、本地化
3.1扩展卡尔曼滤波本地化
3.2无损卡尔曼滤波本地化
3.3粒子滤波本地化
3.4直方图滤波本地化
四、映射
4.1高斯网格映射
4.2光线投射网格映射
4.3k均值物体聚类
4.4圆形拟合物体形状识别
五、SLAM
5.1迭代最近点匹配
5.2EKF SLAM
5.3FastSLAM 1.0
5.4FastSLAM 2.0
5.5基于图的SLAM
六、路径规划
6.1动态窗口方式
6.2基于网格的搜索
迪杰斯特拉算法
A*算法
势场算法
6.3模型预测路径生成
路径优化示例
查找表生成示例
6.4状态晶格规划
均匀极性采样(Uniform polar sampling)
偏差极性采样(Biased polar sampling)
路线采样(Lane sampling)
6.5随机路径图(PRM)规划
6.6Voronoi路径图规划
6.7快速搜索随机树(RRT)
基本RRT
RRT*
基于Dubins路径的RRT
基于Dubins路径的RRT*
基于reeds-shepp路径的RRT*
Informed RRT*
批量Informed RRT*
闭合回路RRT*
LQR-RRT*
6.8三次样条规划
6.9B样条规划
6.10Eta^3样条路径规划
6.11贝济埃路径规划
6.12五次多项式规划
6.13Dubins路径规划
6.14Reeds Shepp路径规划
6.15基于LQR的路径规划
6.16Frenet Frame中的最优路径
七、路径跟踪
7.1姿势控制跟踪
7.2纯追迹跟踪
7.3史坦利控制
7.4后轮反馈控制
7.5线性二次regulator(LQR)转向控制
7.6线性二次regulator(LQR)转向和速度控制
7.7模型预测速度和转向控制
八、项目支持
一、环境需求
Python 3.6.x
numpy
scipy
matplotlib
pandas
cvxpy 0.4.x
二、怎样使用
安装必要的库;
克隆本代码仓库;
执行每个目录下的python脚本;
如果你喜欢,则收藏本代码库:)
三、本地化
3.1 扩展卡尔曼滤波本地化
私信小编001 获取源文件以及PDF!
该算法利用扩展卡尔曼滤波器(Extended Kalman Filter, EKF)实现传感器混合本地化。
蓝线为真实路径,黑线为导航推测路径(dead reckoning trajectory),绿点为位置观测(如GPS),红线为EKF估算的路径。
红色椭圆为EKF估算的协方差。
相关阅读:
概率机器人学
http://www.probabilistic-robotics.org/
3.2 无损卡尔曼滤波本地化
该算法利用无损卡尔曼滤波器(Unscented Kalman Filter, UKF)实现传感器混合本地化。
线和点的含义与EKF模拟的例子相同。
相关阅读:
利用无差别训练过的无损卡尔曼滤波进行机器人移动本地化
https://www.researchgate.net/publication/267963417_Discriminatively_Trained_Unscented_Kalman_Filter_for_Mobile_Robot_Localization
3.3 粒子滤波本地化
该算法利用粒子滤波器(Particle Filter, PF)实现传感器混合本地化。
蓝线为真实路径,黑线为导航推测路径(dead reckoning trajectory),绿点为位置观测(如GPS),红线为PF估算的路径。
该算法假设机器人能够测量与地标(RFID)之间的距离。
PF本地化会用到该测量结果。
相关阅读:
概率机器人学
http://www.probabilistic-robotics.org/
3.4 直方图滤波本地化
该算法是利用直方图滤波器(Histogram filter)实现二维本地化的例子。
红十字是实际位置,黑点是RFID的位置。
蓝色格子是直方图滤波器的概率位置。
在该模拟中,x,y是未知数,yaw已知。
滤波器整合了速度输入和从RFID获得距离观测数据进行本地化。
不需要初始位置。
相关阅读:
概率机器人学
http://www.probabilistic-robotics.org/
四、映射
4.1 高斯网格映射
本算法是二维高斯网格映射(Gaussian grid mapping)的例子。
4.2 光线投射网格映射
本算法是二维光线投射网格映射(Ray casting grid map)的例子。
4.3 k均值物体聚类
本算法是使用k均值算法进行二维物体聚类的例子。
4.4 圆形拟合物体形状识别
本算法是使用圆形拟合进行物体形状识别的例子。
蓝圈是实际的物体形状。
红叉是通过距离传感器观测到的点。
红圈是使用圆形拟合估计的物体形状。
五、SLAM
同时本地化和映射(Simultaneous Localization and Mapping,SLAM)的例子。
5.1 迭代最近点匹配
本算法是使用单值解构进行二维迭代最近点(Iterative Closest Point,ICP)匹配的例子。
它能计算从一些点到另一些点的旋转矩阵和平移矩阵。相关阅读:
机器人运动介绍:迭代最近点算法
https://cs.gmu.edu/~kosecka/cs685/cs685-icp.pdf
5.2 EKF SLAM
这是基于扩展卡尔曼滤波的SLAM示例。
蓝线是真实路径,黑线是导航推测路径,红线是EKF SLAM估计的路径。
绿叉是估计的地标。
相关阅读:
概率机器人学
http://www.probabilistic-robotics.org/
5.3 FastSLAM 1.0
这是用FastSLAM 1.0进行基于特征的SLAM的示例。
蓝线是实际路径,黑线是导航推测,红线是FastSLAM的推测路径。
红点是FastSLAM中的粒子。
黑点是地标,蓝叉是FastLSAM估算的地标位置。
相关阅读:
概率机器人学
http://www.probabilistic-robotics.org/
5.4 FastSLAM 2.0
这是用FastSLAM 2.0进行基于特征的SLAM的示例。
动画的含义与FastSLAM 1.0的情况相同。
相关阅读:
概率机器人学
http://www.probabilistic-robotics.org/
Tim Bailey的SLAM模拟
http://www-personal.acfr.usyd.edu.au/tbailey/software/slam_simulations.htm
5.5 基于图的SLAM
这是基于图的SLAM的示例。
蓝线是实际路径。
黑线是导航推测路径。
红线是基于图的SLAM估算的路径。
黑星是地标,用于生成图的边。
相关阅读:
基于图的SLAM入门
http://www2.informatik.uni-freiburg.de/~stachnis/pdf/grisetti10titsmag.pdf
六、路径规划
6.1 动态窗口方式
这是使用动态窗口方式(Dynamic Window Approach)进行二维导航的示例代码。
相关阅读:
用动态窗口方式避免碰撞
https://www.ri.cmu.edu/pub_files/pub1/fox_dieter_1997_1/fox_dieter_1997_1.pdf
6.2 基于网格的搜索
迪杰斯特拉算法
这是利用迪杰斯特拉(Dijkstra)算法实现的基于二维网格的最短路径规划。
动画中青色点为搜索过的节点。
A*算法
下面是使用A星算法进行基于二维网格的最短路径规划。
动画中青色点为搜索过的节点。
启发算法为二维欧几里得距离。
势场算法
下面是使用势场算法进行基于二维网格的路径规划。
动画中蓝色的热区图显示了每个格子的势能。
一文洞悉Python必备50种算法!资深大牛至少得掌握25种!的更多相关文章
- 算法入门:最大子序列和的四种算法(Java)
最近再学习算法和数据结构,推荐一本书:Data structures and Algorithm analysis in Java 3rd 以下的四种算法出自本书 四种最大子序列和的算法: 问题描述 ...
- c语言求回文数的三种算法的描述
c语言求回文数的三种算法的描述 题目描述 注意:(这些回文数都没有前导0) 1位的回文数有0,1,2,3,4,5,6,7,8,9 共10个: 2位的回文数有11,22,33,44,55,66,77,8 ...
- python数据分析与挖掘实战————银行分控模型(几种算法模型的比较)
一.神经网络算法: 1 import pandas as pd 2 from keras.models import Sequential 3 from keras.layers.core impor ...
- Python 必备面试基础知识-3
今天继续分享 Python 相关的面试题,你准备好了嘛! 网络编程篇 1. 简述 OSI 七层协议 是网络传输协议,人为的把网络传输的不同阶段划分成不同的层次. 七层划分为:应用层.表示层.会话层.传 ...
- Python实现各种排序算法的代码示例总结
Python实现各种排序算法的代码示例总结 作者:Donald Knuth 字体:[增加 减小] 类型:转载 时间:2015-12-11我要评论 这篇文章主要介绍了Python实现各种排序算法的代码示 ...
- LVS三种工作方式八种算法
一.集群简介 什么是集群 计算机集群简称集群是一种计算机系统,它通过一组松散集成的计算机软件和/或硬件连接起来高度紧密地协作完成计算工作.在某种意义上,他们可以被看作是一台计算机.集群系统中的单个计算 ...
- 30个深度学习库:按Python、C++、Java、JavaScript、R等10种语言分类
30个深度学习库:按Python.C++.Java.JavaScript.R等10种语言分类 包括 Python.C++.Java.JavaScript.R.Haskell等在内的一系列编程语言的深度 ...
- Python实现常用排序算法
Python实现常用排序算法 冒泡排序 思路: 它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来.走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完 ...
- 《用Python解决数据结构与算法问题》在线阅读
源于经典 数据结构作为计算机从业人员的必备基础,Java, c 之类的语言有很多这方面的书籍,Python 相对较少, 其中比较著名的一本 problem-solving-with-algorithm ...
随机推荐
- Django_ORM字段_字段参数
Object Relational Mapping (ORM) ORM:对象关系映射模式是一种为解决面向对象与关系数据库存在的互补匹配的现象技术.简单说就是通过使用描述对象和数据库之间的映射的元数据, ...
- windows 通过scoop安装yarn
首先进入cmd,输入powershell指令,如图 Prompt should now start with "PS " 然后run iex (new-object net.web ...
- JQuery----操作01
---恢复内容开始--- 一 JQuery选择器: 基本选择器和基本过滤器和筛选选择器 基础选择器: <title>Title</title> <script src=& ...
- Qt学习--信号与槽(多窗口的实现)
按照helloword的创建过程 创建一个新的项目(项目名:window) 之后进行多窗口的实现过程: (参考:http://www.qter.org/portal.php?mod=view& ...
- svo_udp通信02——一组数据发送
注意事项: 1.client 和server 定义的发送和接收数据(结构)要相同.如: client.c: struct position_packet {float pos_x[5];float p ...
- c#上课总结
private 是完全私有的,只有当前类中的成员能访问到. protected 是受保护的,只有当前类的成员与继承该类的类才能访问. Ctrl+k+c 多行注释Ctrl+k+u 解除注释 e ...
- Buy or Build(UVa1151)
如果枚举每个套餐,并每次都求最小生成树,总时间复杂度会很高,因而需要先求一次原图的最小生成树,则枚举套餐之后需要考虑的边大大减少了. 具体见代码: #include<cstdio> #in ...
- JS处理日期&字符串格式相互转换
之前找过一些获取系统日期以及日期&字符串格式相互转换的方式,但总体自我感觉来说还是以下的方式会更适合一些. 如有更好的方式,望大家多多赐教和交流,谢谢! 2016年曾写过一次,不过只是发了一下 ...
- SOFARPC —— SPI 解析
一.前言 我之前研究过微博的Motan框架(当时接触的第一个RPC框架),当时懵懵懂懂,现在,上手SOFARPC框架,感觉比较轻松,事物的本质都是相通的.以前写博文,会逐行分析源码,慢慢地发现,源码其 ...
- gtest 参数化
前言: 在测试用例中,我们时常需要传给被测函数不同的值,gtest为我们提供了简便的方法,可以使我们能够灵活的进行参数化测试. 步骤: 1.创建一个类,继承testing::TestWithParam ...