题面

题解

这个题目主要是连边很奇怪,但是我们可以发现一个性质:权值是递增的。

于是像下图的连边:(加边方式为\((A_1, B_1, 1)\))

其实可以等价于如下连边:

于是我们将其变成了在环上连边。

在环上连边有一点好,就是可以知道边\((i,i+1)\)的边权最小值。

于是将这些边和之前的三元组\((a, b, c)\)放到边集中去,跑kruskal即可。

代码

#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#define RG register
#define int long long inline int read()
{
int data = 0, w = 1; char ch = getchar();
while(ch != '-' && (!isdigit(ch))) ch = getchar();
if(ch == '-') w = -1, ch = getchar();
while(isdigit(ch)) data = data * 10 + (ch ^ 48), ch = getchar();
return data * w;
} const int maxn(2e5 + 10);
struct edge { int x, y, w; } e[maxn << 2];
inline int cmp(const edge &lhs, const edge &rhs) { return lhs.w < rhs.w; }
int dis[maxn], n, Q, e_num, fa[maxn], ans;
int find(int x) { return fa[x] == x ? x : fa[x] = find(fa[x]); }
template<typename T> inline void chkmin(T &x, const T &y) { if(y < x) x = y; }
inline void add_edge(int x, int y, int w) { e[++e_num] = (edge) {x, y, w}; } signed main()
{
n = read(), Q = read(); memset(dis, 0x3f, sizeof dis);
for(RG int i = 1, a, b, c; i <= Q; i++)
a = read(), b = read(), c = read(),
add_edge(a, b, c), chkmin(dis[a], c + 1), chkmin(dis[b], c + 2);
for(RG int i = 0; i < n; i++) chkmin(dis[i], dis[(i - 1 + n) % n] + 2);
for(RG int i = 0; i < n; i++) chkmin(dis[i], dis[(i - 1 + n) % n] + 2);
for(RG int i = 0; i < n; i++) add_edge(i, (i + 1) % n, dis[i]), fa[i] = i;
std::sort(e + 1, e + e_num + 1, cmp);
for(RG int i = 1; i <= e_num; i++)
{
if(find(e[i].x) == find(e[i].y)) continue;
fa[find(e[i].x)] = find(e[i].y); ans += e[i].w;
}
printf("%lld\n", ans);
return 0;
}

AT2134 Zigzag MST的更多相关文章

  1. 【题解】 AT2134 Zigzag MST

    [题解]AT2134 Zigzag MST 一道MST好题 \(Anson\)有云: 要么是减少边的数量. 要么是改变连接边的方式. 那么如何减少边的数量呢?很简单,把所有不可能对答案产生贡献的边去掉 ...

  2. AT2134 Zigzag MST 最小生成树

    正解:最小生成树 解题报告: 先放下传送门QAQ 然后这题,首先可以发现这神奇的连边方式真是令人头大,,,显然要考虑转化掉QAQ 大概看一下可以发现点对的规律是,左边++,交换位置,再仔细想下,就每个 ...

  3. 题解 [AT2134] Zigzag MST

    题面 解析 我们先考虑一下加一条边(x,y,z)会成什么亚子: (还有很多边不画了...) 然后我们把这个图单独拿出来: 我们可以发现,对于最小生成树的贡献, 它是等价于下面这张图的(因为连通性一样) ...

  4. 【AtCoder2134】ZigZag MST(最小生成树)

    [AtCoder2134]ZigZag MST(最小生成树) 题面 洛谷 AtCoder 题解 这题就很鬼畜.. 既然每次连边,连出来的边的权值是递增的,所以拿个线段树xjb维护一下就可以做了.那么意 ...

  5. Atcoder CODE FESTIVAL 2016 Final G - Zigzag MST[最小生成树]

    题意:$n$个点,$q$次建边,每次建边选定$x,y$,权值$c$,然后接着$(y,x+1,c+1),(x+1,y+1,c+2),(y+1,x+2,c+3),(x+2,y+2,c+4)\dots$(画 ...

  6. [题解] [AtCoder2134] Zigzag MST

    题面 题解 考虑kruscal的过程 对于三个点\(x, y, x + 1\), 我们可以将\((x, y, z), (y, x + 1, z + 1)\)看做\((x, y, z), (x, x + ...

  7. Atcoder2134 Zigzag MST

    问题描述 We have a graph with N vertices, numbered 0 through N−1. Edges are yet to be added. We will pro ...

  8. [LeetCode] Zigzag Iterator 之字形迭代器

    Given two 1d vectors, implement an iterator to return their elements alternately. For example, given ...

  9. [LeetCode] Binary Tree Zigzag Level Order Traversal 二叉树的之字形层序遍历

    Given a binary tree, return the zigzag level order traversal of its nodes' values. (ie, from left to ...

随机推荐

  1. Java并发编程(五)Lock

    一.synchronized的缺陷 synchronized是java中的一个关键字,也就是说是Java语言内置的特性.那么为什么会出现Lock呢? 在上面一篇文章中,我们了解到如果一个代码块被syn ...

  2. BD是什么角色

    BD是什么角色? 在一般创业公司里面,有了产品接下来就是运营了,而运营中很重要的一点就是BD,也就是所谓商务拓展了,俗一点说就是生意的合作拓展 https://www.jianshu.com/p/7d ...

  3. IP负载均衡

    推荐一篇关于LVS的好文: https://www.cnblogs.com/gaoxu387/p/7941381.html 一.原博主要内容: 1.概述 IP负载均衡:四层负载,是基于IP+端口的负载 ...

  4. InnoDB中锁的模式,锁的查看,算法

    InnoDB中锁的模式   Ⅰ.总览 S行级共享锁lock in share mode X行级排它锁增删改 IS意向共享锁 IX意向排他锁 AI自增锁 Ⅱ.锁之间的兼容性 兼 X IX S IS X ...

  5. SMBus与I2C的差别

    The I²C bus and the SMBus are popular 2-wire buses that areessentially compatible with each other. - ...

  6. 使用Python语言理解递归

    递归 一个函数在执行过程中一次或多次调用其本身便是递归,就像是俄罗斯套娃一样,一个娃娃里包含另一个娃娃. 递归其实是程序设计语言学习过程中很快就会接触到的东西,但有关递归的理解可能还会有一些遗漏,下面 ...

  7. openSUSE搭建OpenVPN

    目录 openSUSE搭建OpenVPN 环境 安装openVPN服务端 安装easy-rsa工具 配置vars文件 创建服务端证书及key 创建客户端证书 疏理证书文件 服务端配置 启动openvp ...

  8. ccf--20131203--最大矩形

    刚开始我是想依次计算i个相连矩形的面积,然后找出最大的面积,但是这种做法是时间复杂度是O(n*n),运行会超时. 这个是网上的一种做法,分别计算以第i个矩形作为高时,最大的面积.这就要以i为起始点,左 ...

  9. Linux 小知识翻译 - 「TCP/IP」

    上次说了「协议」相关的话题,这次专门说说「TCP/IP」协议. 这里的主题是「TCP/IP」到底是什么?但并不是要说明「TCP/IP」是什么东西,重点是「TCP/IP」究竟有什么意义,在哪里使用「TC ...

  10. lamp环境安装

    每天学习一点点 编程PDF电子书免费下载: http://www.shitanlife.com/code lamp环境安装 1.查看mysql是否安装 service mysql status 2.查 ...