题面

题解

这个题目主要是连边很奇怪,但是我们可以发现一个性质:权值是递增的。

于是像下图的连边:(加边方式为\((A_1, B_1, 1)\))

其实可以等价于如下连边:

于是我们将其变成了在环上连边。

在环上连边有一点好,就是可以知道边\((i,i+1)\)的边权最小值。

于是将这些边和之前的三元组\((a, b, c)\)放到边集中去,跑kruskal即可。

代码

#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#define RG register
#define int long long inline int read()
{
int data = 0, w = 1; char ch = getchar();
while(ch != '-' && (!isdigit(ch))) ch = getchar();
if(ch == '-') w = -1, ch = getchar();
while(isdigit(ch)) data = data * 10 + (ch ^ 48), ch = getchar();
return data * w;
} const int maxn(2e5 + 10);
struct edge { int x, y, w; } e[maxn << 2];
inline int cmp(const edge &lhs, const edge &rhs) { return lhs.w < rhs.w; }
int dis[maxn], n, Q, e_num, fa[maxn], ans;
int find(int x) { return fa[x] == x ? x : fa[x] = find(fa[x]); }
template<typename T> inline void chkmin(T &x, const T &y) { if(y < x) x = y; }
inline void add_edge(int x, int y, int w) { e[++e_num] = (edge) {x, y, w}; } signed main()
{
n = read(), Q = read(); memset(dis, 0x3f, sizeof dis);
for(RG int i = 1, a, b, c; i <= Q; i++)
a = read(), b = read(), c = read(),
add_edge(a, b, c), chkmin(dis[a], c + 1), chkmin(dis[b], c + 2);
for(RG int i = 0; i < n; i++) chkmin(dis[i], dis[(i - 1 + n) % n] + 2);
for(RG int i = 0; i < n; i++) chkmin(dis[i], dis[(i - 1 + n) % n] + 2);
for(RG int i = 0; i < n; i++) add_edge(i, (i + 1) % n, dis[i]), fa[i] = i;
std::sort(e + 1, e + e_num + 1, cmp);
for(RG int i = 1; i <= e_num; i++)
{
if(find(e[i].x) == find(e[i].y)) continue;
fa[find(e[i].x)] = find(e[i].y); ans += e[i].w;
}
printf("%lld\n", ans);
return 0;
}

AT2134 Zigzag MST的更多相关文章

  1. 【题解】 AT2134 Zigzag MST

    [题解]AT2134 Zigzag MST 一道MST好题 \(Anson\)有云: 要么是减少边的数量. 要么是改变连接边的方式. 那么如何减少边的数量呢?很简单,把所有不可能对答案产生贡献的边去掉 ...

  2. AT2134 Zigzag MST 最小生成树

    正解:最小生成树 解题报告: 先放下传送门QAQ 然后这题,首先可以发现这神奇的连边方式真是令人头大,,,显然要考虑转化掉QAQ 大概看一下可以发现点对的规律是,左边++,交换位置,再仔细想下,就每个 ...

  3. 题解 [AT2134] Zigzag MST

    题面 解析 我们先考虑一下加一条边(x,y,z)会成什么亚子: (还有很多边不画了...) 然后我们把这个图单独拿出来: 我们可以发现,对于最小生成树的贡献, 它是等价于下面这张图的(因为连通性一样) ...

  4. 【AtCoder2134】ZigZag MST(最小生成树)

    [AtCoder2134]ZigZag MST(最小生成树) 题面 洛谷 AtCoder 题解 这题就很鬼畜.. 既然每次连边,连出来的边的权值是递增的,所以拿个线段树xjb维护一下就可以做了.那么意 ...

  5. Atcoder CODE FESTIVAL 2016 Final G - Zigzag MST[最小生成树]

    题意:$n$个点,$q$次建边,每次建边选定$x,y$,权值$c$,然后接着$(y,x+1,c+1),(x+1,y+1,c+2),(y+1,x+2,c+3),(x+2,y+2,c+4)\dots$(画 ...

  6. [题解] [AtCoder2134] Zigzag MST

    题面 题解 考虑kruscal的过程 对于三个点\(x, y, x + 1\), 我们可以将\((x, y, z), (y, x + 1, z + 1)\)看做\((x, y, z), (x, x + ...

  7. Atcoder2134 Zigzag MST

    问题描述 We have a graph with N vertices, numbered 0 through N−1. Edges are yet to be added. We will pro ...

  8. [LeetCode] Zigzag Iterator 之字形迭代器

    Given two 1d vectors, implement an iterator to return their elements alternately. For example, given ...

  9. [LeetCode] Binary Tree Zigzag Level Order Traversal 二叉树的之字形层序遍历

    Given a binary tree, return the zigzag level order traversal of its nodes' values. (ie, from left to ...

随机推荐

  1. JavaScript大杂烩10 - 理解DOM

    操作DOM 终于到了JavaScript最为核心的部分了,通常来说,操作DOM,为页面提供更为友好的行为是JavaScript根本目标.   DOM树 - HTML结构的抽象 既然DOM是操纵HTML ...

  2. Cookie的HttpOnly、secure、domain属性

    Cookie主要属性 Cookie主要属性: path domain max-age expires:是expires的补充,现阶段有兼容性问题:IE低版本不支持,所以一般不单独使用 secure h ...

  3. Configure Monit on AWS CentOS7 to guard Squid proxy

    Install Monit:sudo -iamazon-linux-extras install epelyum -y install monit Config monit: vim /etc/mon ...

  4. SQL SERVER2008判断文件夹是否存在并创建文件夹

    原文地址:https://www.cnblogs.com/iiwen/p/7650118.html DECLARE @PATH VARCHAR(255) --路径 DECLARE @DATE VARC ...

  5. Unity Chan 2D Asset

    Unity Chan 2D Asset 4月份時,UNITY CHAN 官方網站推出了3D大島こはく,之後也有更新1.11版,而在六月12日時,則釋出了2D版本素材,一樣可以在UNITY CHAN 官 ...

  6. ws协议的配置

    server { listen 80; server_name 域名或IP; rewrite ^(.*)$ https://$host$1 permanent; } server { listen 4 ...

  7. [JSON_01] JSON 解析

    0. 说明 介绍 && 测试 JSON 1. 介绍 XML 指可扩展标记语言(eXtensible Markup Language). XML 被设计用来传输和存储数据. JSON: ...

  8. zabbix-Get value from agent failed: cannot connect to [[127.0.0.1]:10050]: [111] Connection refused

    监控zabbix服务端这台服务器,然后显示Get value from agent failed: cannot connect to [[127.0.0.1]:10050]: [111] Conne ...

  9. myeclipce项目导入eclipse中报错

    1 找到新建页面所在的工程名字,然后左键选中,右键弹出功能菜单,选择Build Path,进入配置路径. 2 在java build path 页面的下选择Libraries栏目(默认选择),点击右侧 ...

  10. Paramiko和堡垒机实现

    一.Paramiko paramiko模块,基于SSH用于连接远程服务器并执行相关操作. 1.安装:pip install paramiko 2.SSHClient:用于连接远程服务器并执行基本命令 ...