luogu4185 [USACO18JAN]MooTube (并查集)
类似于NOI2018d1t1的离线做法,把询问存下来,排个序,然后倒着给并查集加边,每次询问并查集联通块大小
#include<bits/stdc++.h>
#define ll long long
#define pa pair<int,int>
using namespace std;
const int maxn=; inline ll rd(){
ll x=;char c=getchar();
while(c<''||c>'') c=getchar();
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x;
} struct Edge{
int a,b,l;
}eg[maxn],que[maxn];
int N,M;
int fa[maxn],siz[maxn],ans[maxn]; inline bool cmp(Edge a,Edge b){
return a.l>b.l;
} int getf(int x){return x==fa[x]?x:fa[x]=getf(fa[x]);}
inline void add(int a,int b){
int x=getf(a),y=getf(b);
fa[x]=y;siz[y]+=siz[x];
} int main(){
int i,j,k;
N=rd(),M=rd();
for(i=;i<N;i++){
eg[i].a=rd(),eg[i].b=rd(),eg[i].l=rd();
}for(i=;i<=M;i++){
que[i].l=rd(),que[i].a=rd();
que[i].b=i;
}
for(i=;i<=N;i++) fa[i]=i,siz[i]=;
sort(eg+,eg+N,cmp);sort(que+,que+M+,cmp);
for(i=,j=;i<=M;i++){
for(;j<N&&eg[j].l>=que[i].l;j++) add(eg[j].a,eg[j].b);
ans[que[i].b]=siz[getf(que[i].a)];
}
for(i=;i<=M;i++) printf("%d\n",ans[i]-);
}
luogu4185 [USACO18JAN]MooTube (并查集)的更多相关文章
- BZOJ5188: [Usaco2018 Jan]MooTube 并查集+离线处理
BZOJ又不给题面... Luogu的翻译看不下去... 题意简述 有一个$n$个节点的树,边有权值,定义两个节点之间的距离为两点之间的路径上的最小边权 给你$Q$个询问,问你与点$v$的距离超过$k ...
- 并查集 || [USACO18JAN]MooTube || BZOJ 5188 || Luogu P4185
题面:[USACO18JAN]MooTube 题解: 对边和询问都排序,然后每次把符合当前要求的边都扔并查集里,对于每个询问判断当前并查集里节点数即可. 我很无聊地给并查集加了按秩排序,还开了O2,加 ...
- [USACO18JAN] MooTube (离线并查集)
题目大意:给你一棵边权树,定义两点间距离为它们唯一路径上的最小路权,求与某点距离不大于K(k为已知)的点的数量 带权并查集维护集合内元素总数 路和问题 都按权值大到小排序,枚举问题, 建权值不小于K的 ...
- Bzoj5188/洛谷P4185 [Usaco2018 Jan]MooTube(并查集)
题面 Bzoj 洛谷 题解 最暴力的方法是直接判两个点之间的路径最小值是否\(\geq k\),用\(Dijkstra\)可以做到该算法最快效率,但是空间复杂度始终是\(O(n^2)\)的,会\(ML ...
- 【LG4185】[USACO18JAN]MooTube
[LG4185][USACO18JAN]MooTube 题面 洛谷 题解 先将所有操作和询问离线 然后按照边权从大到小将操作和询问排序 利用\(two\;pointers\),每次扫到一个询问,将边权 ...
- BZOJ 4199: [Noi2015]品酒大会 [后缀数组 带权并查集]
4199: [Noi2015]品酒大会 UOJ:http://uoj.ac/problem/131 一年一度的“幻影阁夏日品酒大会”隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发“首席品 ...
- 关押罪犯 and 食物链(并查集)
题目描述 S 城现有两座监狱,一共关押着N 名罪犯,编号分别为1~N.他们之间的关系自然也极不和谐.很多罪犯之间甚至积怨已久,如果客观条件具备则随时可能爆发冲突.我们用"怨气值"( ...
- 图的生成树(森林)(克鲁斯卡尔Kruskal算法和普里姆Prim算法)、以及并查集的使用
图的连通性问题:无向图的连通分量和生成树,所有顶点均由边连接在一起,但不存在回路的图. 设图 G=(V, E) 是个连通图,当从图任一顶点出发遍历图G 时,将边集 E(G) 分成两个集合 T(G) 和 ...
- bzoj1854--并查集
这题有一种神奇的并查集做法. 将每种属性作为一个点,每种装备作为一条边,则可以得到如下结论: 1.如果一个有n个点的连通块有n-1条边,则我们可以满足这个连通块的n-1个点. 2.如果一个有n个点的连 ...
随机推荐
- sklearn学习笔记之简单线性回归
简单线性回归 线性回归是数据挖掘中的基础算法之一,从某种意义上来说,在学习函数的时候已经开始接触线性回归了,只不过那时候并没有涉及到误差项.线性回归的思想其实就是解一组方程,得到回归函数,不过在出现误 ...
- c++多继承布局
1:多重继承 对于一个继承了多个base class 的对象,将其地址指定给最左端(也就是第一个)base class的指针, 情况将和单一继承时相同,因为两者都指向相同的其实地址.至于第二个或者更后 ...
- Linux lsof 命令
lsof(list open files)是一个查看进程打开的文件的工具. 在 linux 系统中,一切皆文件.通过文件不仅仅可以访问常规数据,还可以访问网络连接和硬件.所以 lsof 命令不仅可以查 ...
- C#编写WINNT服务,随便解决安卓开发遇到的5037被众多程序无节操占用的问题
需求分析: 最近重新开始学习安卓开发,好久不用的ADT集成开发环境频繁遇到不能在仿真机和真机上调试的问题,也就是本人另一篇博文描述的ADB(Android Debug Bridge)监控的5037被金 ...
- 批量实现多台服务器之间ssh无密码登录的相互信任关系
最近IDC上架了一批hadoop大数据业务服务器,由于集群环境需要在这些服务器之间实现ssh无密码登录的相互信任关系.具体的实现思路:在其中的任一台服务器上通过"ssh-keygen -t ...
- python基础学习笔记(二)
继续第一篇的内容,讲解,python的一些基本的东西. 注释 为了让别人能够更容易理解程序,使用注释是非常有效的,即使是自己回头再看旧代码也是一样. >>> #获得用户名: > ...
- vue全局 关键字搜索 v-search
一款基于 vuejs & weui 的全屏搜索组件:https://www.npmjs.com/package/vue-search
- 【个人项目总结】C#四则运算表达式生成程序
S1&2.个人项目时间估算 PSP表格如下: PSP2.1 Personal Software Process Stages Time(Before) Time(After) Planning ...
- Linux内核第七节 20135332武西垚
预处理.编译.链接和目标文件的格式 可执行程序是怎么得来的 以C语言为例,c代码经过编译器的预处理,编译成汇编代码,由汇编器编译成目标代码,再链接成可执行文件,由操作系统加载到cpu里来执行. (截图 ...
- github更新,发布地址,燃尽图,总结
github地址:https://github.com/Lingchaoyang 网盘发布地址:http://pan.baidu.com/s/1qXgHiyC 燃尽图: 团队得分(100分制): 杨灵 ...