类似于NOI2018d1t1的离线做法,把询问存下来,排个序,然后倒着给并查集加边,每次询问并查集联通块大小

 #include<bits/stdc++.h>
#define ll long long
#define pa pair<int,int>
using namespace std;
const int maxn=; inline ll rd(){
ll x=;char c=getchar();
while(c<''||c>'') c=getchar();
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x;
} struct Edge{
int a,b,l;
}eg[maxn],que[maxn];
int N,M;
int fa[maxn],siz[maxn],ans[maxn]; inline bool cmp(Edge a,Edge b){
return a.l>b.l;
} int getf(int x){return x==fa[x]?x:fa[x]=getf(fa[x]);}
inline void add(int a,int b){
int x=getf(a),y=getf(b);
fa[x]=y;siz[y]+=siz[x];
} int main(){
int i,j,k;
N=rd(),M=rd();
for(i=;i<N;i++){
eg[i].a=rd(),eg[i].b=rd(),eg[i].l=rd();
}for(i=;i<=M;i++){
que[i].l=rd(),que[i].a=rd();
que[i].b=i;
}
for(i=;i<=N;i++) fa[i]=i,siz[i]=;
sort(eg+,eg+N,cmp);sort(que+,que+M+,cmp);
for(i=,j=;i<=M;i++){
for(;j<N&&eg[j].l>=que[i].l;j++) add(eg[j].a,eg[j].b);
ans[que[i].b]=siz[getf(que[i].a)];
}
for(i=;i<=M;i++) printf("%d\n",ans[i]-);
}

luogu4185 [USACO18JAN]MooTube (并查集)的更多相关文章

  1. BZOJ5188: [Usaco2018 Jan]MooTube 并查集+离线处理

    BZOJ又不给题面... Luogu的翻译看不下去... 题意简述 有一个$n$个节点的树,边有权值,定义两个节点之间的距离为两点之间的路径上的最小边权 给你$Q$个询问,问你与点$v$的距离超过$k ...

  2. 并查集 || [USACO18JAN]MooTube || BZOJ 5188 || Luogu P4185

    题面:[USACO18JAN]MooTube 题解: 对边和询问都排序,然后每次把符合当前要求的边都扔并查集里,对于每个询问判断当前并查集里节点数即可. 我很无聊地给并查集加了按秩排序,还开了O2,加 ...

  3. [USACO18JAN] MooTube (离线并查集)

    题目大意:给你一棵边权树,定义两点间距离为它们唯一路径上的最小路权,求与某点距离不大于K(k为已知)的点的数量 带权并查集维护集合内元素总数 路和问题 都按权值大到小排序,枚举问题, 建权值不小于K的 ...

  4. Bzoj5188/洛谷P4185 [Usaco2018 Jan]MooTube(并查集)

    题面 Bzoj 洛谷 题解 最暴力的方法是直接判两个点之间的路径最小值是否\(\geq k\),用\(Dijkstra\)可以做到该算法最快效率,但是空间复杂度始终是\(O(n^2)\)的,会\(ML ...

  5. 【LG4185】[USACO18JAN]MooTube

    [LG4185][USACO18JAN]MooTube 题面 洛谷 题解 先将所有操作和询问离线 然后按照边权从大到小将操作和询问排序 利用\(two\;pointers\),每次扫到一个询问,将边权 ...

  6. BZOJ 4199: [Noi2015]品酒大会 [后缀数组 带权并查集]

    4199: [Noi2015]品酒大会 UOJ:http://uoj.ac/problem/131 一年一度的“幻影阁夏日品酒大会”隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发“首席品 ...

  7. 关押罪犯 and 食物链(并查集)

    题目描述 S 城现有两座监狱,一共关押着N 名罪犯,编号分别为1~N.他们之间的关系自然也极不和谐.很多罪犯之间甚至积怨已久,如果客观条件具备则随时可能爆发冲突.我们用"怨气值"( ...

  8. 图的生成树(森林)(克鲁斯卡尔Kruskal算法和普里姆Prim算法)、以及并查集的使用

    图的连通性问题:无向图的连通分量和生成树,所有顶点均由边连接在一起,但不存在回路的图. 设图 G=(V, E) 是个连通图,当从图任一顶点出发遍历图G 时,将边集 E(G) 分成两个集合 T(G) 和 ...

  9. bzoj1854--并查集

    这题有一种神奇的并查集做法. 将每种属性作为一个点,每种装备作为一条边,则可以得到如下结论: 1.如果一个有n个点的连通块有n-1条边,则我们可以满足这个连通块的n-1个点. 2.如果一个有n个点的连 ...

随机推荐

  1. Luogu P3177 [HAOI2015]树上染色

    一道有机结合了计数和贪心这一DP两大考点的神仙题,不得不说做法是很玄妙. 首先我们很容易想到DP,设\(f_{i,j}\)表示在以\(i\)为根节点的子树中选\(j\)个黑色节点的最大收益值. 然后我 ...

  2. SpringBoot日记——任务处理 之 异步、定时、邮件

    ---恢复内容开始--- 直接步入正题. 异步任务 异步任务比较简单,只需要两个注解就可以搞定,我们直接来看如何使用: 1.创建一个service,带上@EnableAsync,就是开启异步任务的注解 ...

  3. 使用canvas实现一个圆球的触壁反弹

    HTML <canvas id="canvas" width="500" height="500" style="borde ...

  4. Sql_join left right

    1.内连接inner join 只返回两张表中所有满足连接条件的行,即使用比较运算符根据每个表中共有的列的值匹配两个表中的行.(inner关键字是可省略的) ①传统的连接写法: 在FROM子句中列出所 ...

  5. Lotto HDU

    链接 [http://acm.hdu.edu.cn/showproblem.php?pid=1342] 题意 分析 DFS 代码 #include<cstdio> #include< ...

  6. 第二个spring, 第7天

    陈志棚:成绩的统筹 李天麟:界面音乐 徐侃:代码算法 代码初步已经完成.还差最后一步整合.附上最后一张截图

  7. EL表达式和JSTL标签库

    expresion language表达式语言 可以输出表达式的值.跟jsp的表达式脚本一样.计算表达式的值后输出.  EL表达式出现的目的是为了使JSP写起来更加简单,让jsp的代码更佳简化. 1. ...

  8. 用IntelliJ IDEA编译,编译之后提示 无效的标记: -release

    软件版本:ideaIU-2016.3.2 JDK:jdk-9.0.4_windows-x64_bin 开始的时候建立一个maven项目,发现编译的时候提示[无效的标记: -release],以为是项目 ...

  9. [转帖]UEFI和BIOS

    UEFI和Legacy及UEFI+Legacy启动的区别 https://www.cnblogs.com/net5x/p/6850801.html 一直给人装系统 但是连这些最基本的都不知道 感觉自己 ...

  10. [转帖]服务器操作系统应该选择 Debian/Ubuntu 还是 CentOS?

    来源:https://www.zhihu.com/question/19599986 作者: https://www.zhihu.com/people/yuan-hao-yang/answers IT ...