【BZOJ2142】礼物(拓展卢卡斯定理)

题面

BZOJ

洛谷

题解

显然如果\(\sum w_i>n\)无解。

否则答案就是:\(\displaystyle \prod_{i=1}^m{n-\sum_{j=0}^{i-1}w_j\choose w_i}\)。

因为并没有保证\(P\)是质数,所以需要用到拓展卢卡斯。

#include<iostream>
#include<cstdio>
using namespace std;
#define ll long long
ll sum;
int P,n,m,M[50],V[50],w[50];
int fpow(int a,int b)
{
int s=1;
while(b){if(b&1)s*=a;a*=a;b>>=1;}
return s;
}
int fpow(int a,int b,int MOD)
{
int s=1;
while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}
return s;
}
void exgcd(int a,int b,int &x,int &y)
{
if(b==0){x=1;y=0;return;}
exgcd(b,a%b,y,x);y-=a/b*x;
}
int inv(int a,int b)
{
int x,y;exgcd(a,b,x,y);
x=(x%b+b)%b;return x;
}
int fac[50],pw[50],tot;
int JC(int n,int p,int MOD,int &z)
{
if(!n){z=0;return 1;}
int ret=JC(n/p,p,MOD,z);z+=n/p;
int s=1;
if(n>=MOD)
{
for(int i=1;i<=MOD;++i)if(i%p)s=1ll*s*i%MOD;
s=fpow(s,n/MOD,MOD);n%=MOD;
}
for(int i=1;i<=n;++i)if(i%p)s=1ll*s*i%MOD;
ret=1ll*ret*s%MOD;
return ret;
}
int CRT()
{
for(int i=2;i<=tot;++i)
{
int x,y;exgcd(M[1],M[i],x,y);
x=(1ll*x*(V[i]-V[1])%M[i]+M[i])%M[i];
V[1]=(V[1]+1ll*x*M[1])%(M[1]*M[i]);
M[1]*=M[i];
}
return V[1];
}
int main()
{
scanf("%d%d%d",&P,&n,&m);
for(int i=1;i<=m;++i)scanf("%d",&w[i]),sum+=w[i];
if(sum>n){puts("Impossible");return 0;}
for(int i=2;i*i<=P;++i)
if(P%i==0)
{
fac[++tot]=i;
while(P%i==0)++pw[tot],P/=i;
}
if(P>1)fac[++tot]=P,pw[tot]=1;
for(int i=1;i<=tot;++i)
{
int N=n,zero=0,z=0,a=1,b=1,MOD=fpow(fac[i],pw[i]);
a=JC(N,fac[i],MOD,z);zero+=z;
b=JC(N-sum,fac[i],MOD,z);zero-=z;
for(int j=1;j<=m;++j)
b=1ll*b*JC(w[j],fac[i],MOD,z)%MOD,zero-=z;
M[i]=MOD;V[i]=1ll*a*inv(b,MOD)%MOD*fpow(fac[i],zero,MOD)%MOD;
}
printf("%d\n",CRT());
}

【BZOJ2142】礼物(拓展卢卡斯定理)的更多相关文章

  1. bzoj2142 礼物——扩展卢卡斯定理

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2142 前几天学了扩展卢卡斯定理,今天来磕模板! 这道题式子挺好推的(连我都自己推出来了) , ...

  2. 【BZOJ4830】[HNOI2017]抛硬币(组合计数,拓展卢卡斯定理)

    [BZOJ4830][HNOI2017]抛硬币(组合计数,拓展卢卡斯定理) 题面 BZOJ 洛谷 题解 暴力是啥? 枚举\(A\)的次数和\(B\)的次数,然后直接组合数算就好了:\(\display ...

  3. 【BZOJ3129】[SDOI2013]方程(容斥,拓展卢卡斯定理)

    [BZOJ3129][SDOI2013]方程(容斥,拓展卢卡斯定理) 题面 BZOJ 洛谷 题解 因为答案是正整数,所先给每个位置都放一个就行了,然后\(A\)都要减一. 大于的限制和没有的区别不大, ...

  4. 【BZOJ-2142】礼物 拓展Lucas定理

    2142: 礼物 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1313  Solved: 541[Submit][Status][Discuss] ...

  5. BZOJ2142礼物——扩展卢卡斯

    题目描述 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多.小E从商店中购买了n件礼 ...

  6. [bzoj2142]礼物(扩展lucas定理+中国剩余定理)

    题意:n件礼物,送给m个人,每人的礼物数确定,求方案数. 解题关键:由于模数不是质数,所以由唯一分解定理, $\bmod  = p_1^{{k_1}}p_2^{{k_2}}......p_s^{{k_ ...

  7. 【bzoj2142】【礼物】拓展Lucas定理+孙子定理

    (上不了p站我要死了,侵权度娘背锅) Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同,在小E心中分量 ...

  8. bzoj2142: 礼物

    2142: 礼物 Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E心目中的重要性不同,在小E心中分量越重的人,收到的礼物会 ...

  9. 【BZOJ4591】[SHOI2015]超能粒子炮·改 (卢卡斯定理)

    [BZOJ4591][SHOI2015]超能粒子炮·改 (卢卡斯定理) 题面 BZOJ 洛谷 题解 感天动地!终于不是拓展卢卡斯了!我看到了一个模数,它是质数!!! 看着这个东西就感觉可以递归处理. ...

随机推荐

  1. 使用Topshelf管理Windows服务

    目的:以控制台方式开发Windows服务程序,调试部署方便. https://www.cnblogs.com/itjeff/p/8316244.html https://www.cnblogs.com ...

  2. [Oracle]如何取Control File 的Dump

    ]如何取Control File 的Dump: SQL> alter session set events 'immediate trace name controlf level 3';SQL ...

  3. CRC---循环冗余校验

    typedef unsigned char uchar; typedef unsigned int uint; typedef unsigned short uInt16; uint crc; // ...

  4. dpkg:错误:正在解析文件 '/var/lib/dpkg/updates/0014' 第 0 行附近:在字段名 #padding 中有换行符问题的解决方法

    解决方案如下: sudo rm /var/lib/dpkg/updates/* sudo apt-get update python@ubuntu:~/Desktop/_Welcome_.jpg.ex ...

  5. json中获取key值

    <script type="text/javascript"> getJson('age'); function getJson(key){ var jsonObj={ ...

  6. Centos7 中文乱码

    1. 安装中文库 yum groupinstall "fonts" 2. 检查是否有中文语言包 locale -a 3. 查看当前系统语言环境 locale 解析如下 LANG:当 ...

  7. nginx反向代理中proxy_set_header 运维笔记

    Nginx proxy_set_header:即允许重新定义或添加字段传递给代理服务器的请求头.该值可以包含文本.变量和它们的组合.在没有定义proxy_set_header时会继承之前定义的值.默认 ...

  8. open-falcon ---客户机agent操作

    open-falcon的agent用于采集机器负载监控指标,比如cpu.idle.load.1min.disk.io.util等等,每隔60秒push给Transfer.agent与Transfer建 ...

  9. C++STL——优先队列

    一.相关定义 优先队列容器与队列一样,只能从队尾插入元素,从队首删除元素.但是它有一个特性,就是队列中最大的元素总是位于队首,所以出队时,并非按照先进先出的原则进行,而是将当前队列中最大的元素出队.这 ...

  10. CF1016 D. Vasya And The Matrix

    传送门 [http://codeforces.com/group/1EzrFFyOc0/contest/1016/problem/D] 题意 已知矩阵n行m列,以及每一行,每一列所有元素的异或,用 a ...