若2018次方程$x^{2018}-4036x^{2017}+a_{2016}x^{2016}+\cdots+a_1x+a_0=0$ 有2018个正实数,

则对于所有可能的方程$\sum\limits_{i=0}^{2016}|a_i|$的最大值为_____


解答:由韦达定理得:\begin{align*}
1+|a_0|+|a_1|+\cdots+| a_{2016}|+4036 &=(1+x_1)(1+x_2)\cdots(1+x_{2018}) \\
&\le \left(\dfrac{\sum\limits_{i=1}^{2018}(1+x_i)}{2018}\right)^{2018}\\
&=\left(\dfrac{4036+2018}{2018}\right)^{2018}\\
&=3^{2018}\\
\end{align*}
故$\sum\limits_{i=0}^{2016}|a_i|\le3^{2018}-4036-1=3^{2018}-4037$

MT【217】韦达定理应用的更多相关文章

  1. MT【216】韦达定理

    设$n$为正整数,$a_1,a_2,\cdots,a_n;b_1,b_2,\cdots,b_n;A,B$都是正数, 满足$a_i\le b_i,a_i\le A,i=1,2,\cdots,n$ 且$\ ...

  2. 多点触摸(MT)协议(翻译)

    参考: http://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt 转自:http://www.arm9home.ne ...

  3. leetcode 217

    217. Contains Duplicate Given an array of integers, find if the array contains any duplicates. Your ...

  4. /MT、/MD编译选项,以及可能引起在不同堆中申请、释放内存的问题

    一.MD(d).MT(d)编译选项的区别 1.编译选项的位置 以VS2005为例,这样子打开: 1)         打开项目的Property Pages对话框 2)         点击左侧C/C ...

  5. MT写的对URL操作的两个方法

    <!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  6. MD(d)、MT(d)编译选项的区别

    1.编译选项的位置 以VS2005为例,这样子打开: 1)         打开项目的Property Pages对话框 2)         点击左侧C/C++节 3)         点击Code ...

  7. DCMTK3.6.0 (MT支持库)安装 完整说明

    环境WIN7 + VisualStudio2010 + dcmtk3.6.0 + Cmake2.8.6 准备工作: 从dcmtk官方网站下载源代码及支持库文件.分别名为:dcmtk-3.6.0 dcm ...

  8. visual studio运行时库MT、MTd、MD、MDd的研究(转载)

    转载:http://blog.csdn.net/ybxuwei/article/details/9095067 转载:http://blog.sina.com.cn/s/blog_624485f701 ...

  9. 关于电脑玩MT以及多开的方法

    方法是转的别人的首先感谢原创者!!上四开屏幕截图,因为小伙伴需要8张卡,所以我四个四个一起练.8开我的电脑估计都有压力,五开六开可能没问题,但是为了方便就四开,练完四个再练四个.图接下来说下多开模拟器 ...

随机推荐

  1. linux中yum与rpm区别

    一.源代码形式 1.      绝大多数开源软件都是直接以原码形式发布的 2.      源代码一般会被打成.tar.gz的归档压缩文件 3.      源代码需要编译成为二进制形式之后才能够运行使用 ...

  2. sql 语言

    sql 语言 DDL DDL 全称 Data Definition Language,即数据定义语言. DATABASE 创建数据库 CREATE DATABASE 语句用于创建数据库. CREATE ...

  3. Luogu4249 WC2007 石头剪刀布 费用流

    传送门 考虑竞赛图三元环计数,设第\(i\)个点的入度为\(d_i\),根据容斥,答案为\(C_n^3 - \sum C_{d_i}^2\) 所以我们需要最小化\(\sum C_{d_i}^2\) 考 ...

  4. CF1039E Summer Oenothera Exhibition 贪心、根号分治、倍增、ST表

    传送门 感谢这一篇博客的指导(Orzwxh) $PS$:默认数组下标为$1$到$N$ 首先很明显的贪心:每一次都选择尽可能长的区间 不妨设$d_i$表示在取当前$K$的情况下,左端点为$i$的所有满足 ...

  5. Nowcoder156F 托米的游戏/CF280C Game on tree 期望

    传送门 题意:给出一棵树,在每一轮中,随机选择一个点将它与它的子树割掉,最后割掉所有点时游戏结束,问游戏期望进行多少轮.$N \leq 10^5$ 和的期望等于期望的和,我们考虑每一个点对最后答案的贡 ...

  6. Luogu P2279 [HNOI2003]消防局的设立

    这真的是一道SB题.去你的树形DP 我们看到题目就开始考虑贪心,怎么搞? 一个显然的思路,每次找出一个深度最大且未被覆盖的点,然后建一个消防局? 但这样的话,动用简单的人类思维就可以知道:我TM的还不 ...

  7. P5204 [USACO19JAN]Train Tracking 2

    P5204 [USACO19JAN]Train Tracking 2 毒毒题,对着嘤文题解看了贼久 首先考虑此题的一个弱化版本:如果输入的所有\(c_i\)相等怎么做 现在假设有\(len\)个数,取 ...

  8. Stencil 基础

    Stencil 一个轻量化,渐进式编译器,注意,不是框架. 使用 TypeScript 进行所有操作,这是一个门槛,有一定技术门槛要求. PS:个人强烈推荐所有的前端同学都学习,或至少了解这个超集语言 ...

  9. WinForm 简易仿360界面控件

    因为经常要做一些1.2千行的小工具,WinForm自带的TabCtrl又不美观,所以想做成360的样子,在网上找来找去,都只有散乱的代码,没有可以通用的结构,于是自己写了一个简易的通用控件. 控件主要 ...

  10. BGFX 渲染引擎中着色器代码的调试方法

    在实时渲染的图形开发中,着色器代码(Shader)越来越复杂,于是单纯的靠经验和不断试错的开发和调试方法早已不能满足实际需求.使用调试工具进行调试,成为开发中重要的方法.Bgfx 是一款跨平台.抽象封 ...