题意

题目链接

Sol

质数的限制并没有什么卵用,直接容斥一下:答案 = 忽略质数总的方案 - 没有质数的方案

那么直接dp,设\(f[i][j]\)表示到第i个位置,当前和为j的方案数

\(f[i + 1][(j + k) \% p] += f[i][j]\)

矩乘优化一下。

#include<bits/stdc++.h>
#define LL long long
using namespace std;
const int MAXN = 2e7 + 10, mod = 20170408, SS = 1e5 + 10;
LL GG = 1e17;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
template<typename A, typename B> inline int add(A x, B y) {
if(x + y < 0) return x + y + mod;
else return x + y >= mod ? x + y - mod : x + y;
}
template<typename A, typename B> inline void add2(A &x, B y) {
if(x + y < 0) x = x + y + mod;
else x = (x + y >= mod ? x + y - mod : x + y);
}
template<typename A, typename B> inline int mul(A x, B y) {
return 1ll * x * y % mod;
}
int N, M, p, Lim;//1 - M, ºÍÊÇpµÄ±¶Êý
int f[SS], vis[MAXN], mu[MAXN], prime[MAXN], tot, cnt, num[SS], tim[SS], val[SS];
struct Ma {
int m[201][201];
Ma() {
memset(m, 0, sizeof(m));
}
void init() {
for(int i = 0; i <= Lim; i++) m[i][i] = 1;
}
void clear() {
memset(m, 0, sizeof(m));
}
void print() {
for(int i = 0; i <= Lim; i++, puts(""))
for(int j = 0; j <= Lim; j++)
printf("%d ", m[i][j]);
}
Ma operator * (const Ma &rhs) const {
Ma ans = {};
for(int i = 0; i <= Lim; i++)
for(int j = 0; j <= Lim; j++) {
__int128 tmp = 0;
for(int k = 0; k <= Lim; k++) {
tmp += 1ll * m[i][k] * rhs.m[k][j];
}
ans.m[i][j] = tmp % mod;
}
return ans;
}
}g;
Ma MatrixPow(Ma a, int p) {
Ma base; base.init();
while(p) {
if(p & 1) base = base * a;
a = a * a; p >>= 1;
}
return base;
}
void sieve(int N) {
vis[1] = 1; mu[1] = 1;
for(int i = 2; i <= N; i++) {
if(!vis[i]) prime[++tot] = i, mu[i] = -1;
for(int j = 1; j <= tot && i * prime[j] <= N; j++) {
vis[i * prime[j]] = 1;
if(i % prime[j]) mu[i * prime[j]] = -mu[i];
else {mu[i * prime[j]] = 0; break;}
}
}
for(int i = 1; i <= N; i++)
if(vis[i]) num[i % p]++;
} int solve1() {//ºöÊÓÖÊÊýµÄÏÞÖÆ
for(int i = 1; i <= M; i++) f[i % p]++;
for(int j = 0; j < p; j++) {
memset(tim, 0, sizeof(tim));
memset(val, 0, sizeof(val));
int step = M;
for(int k = 1; k <= M; k++) {
int nxt = (j + k) % p;
if(tim[nxt]) {step = k - 1; break;}
tim[nxt] = 1; val[nxt]++;
}
if(step) for(int k = 0; k <= Lim; k++) g.m[k][j] = M / step * val[k];
for(int k = M / step * step + 1; k <= M; k++) g.m[(j + k) % p][j]++;
}
Ma ans = MatrixPow(g, N - 1);
int out = 0;
for(int i = 0; i <= Lim; i++) add2(out, mul(ans.m[0][i], f[i]));
return out;
}
int solve2() {//ÎÞÖÊÊý
memset(f, 0, sizeof(f));
g.clear();
for(int i = 1; i <= M; i++) f[i % p] += (vis[i]);
for(int j = 0; j < p; j++)
for(int k = 0; k < p; k++)
g.m[(j + k) % p][j] += num[k]; Ma ans = MatrixPow(g, N - 1);
int out = 0;
for(int i = 0; i <= Lim; i++)
add2(out, mul(ans.m[0][i], f[i]));
return out;
}
int main() {
N = read(); M = read(); Lim = p = read();
sieve(M);
cout << (solve1() - solve2() + mod) % mod;
return 0;
}

loj#2002. 「SDOI2017」序列计数(dp 矩阵乘法)的更多相关文章

  1. AC日记——「SDOI2017」序列计数 LibreOJ 2002

    「SDOI2017」序列计数 思路: 矩阵快速幂: 代码: #include <bits/stdc++.h> using namespace std; #define mod 201704 ...

  2. loj#2128. 「HAOI2015」数字串拆分 矩阵乘法

    目录 题目链接 题解 代码 题目链接 loj#2128. 「HAOI2015」数字串拆分 题解 \(f(s)\)对于\(f(i) = \sum_{j = i - m}^{i - 1}f(j)\) 这个 ...

  3. 【BZOJ4818】[Sdoi2017]序列计数 DP+矩阵乘法

    [BZOJ4818][Sdoi2017]序列计数 Description Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数.Alice还希望 ,这n个数 ...

  4. loj2002 「SDOI2017」序列计数

    水题 #include <iostream> #include <cstring> #include <cstdio> using namespace std; t ...

  5. Loj #3059. 「HNOI2019」序列

    Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k ...

  6. BZOJ_4818_[Sdoi2017]序列计数_矩阵乘法

    BZOJ_4818_[Sdoi2017]序列计数_矩阵乘法 Description Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数.Alice还希望 ...

  7. loj #2051. 「HNOI2016」序列

    #2051. 「HNOI2016」序列 题目描述 给定长度为 n nn 的序列:a1,a2,⋯,an a_1, a_2, \cdots , a_na​1​​,a​2​​,⋯,a​n​​,记为 a[1: ...

  8. loj #2006. 「SCOI2015」小凸玩矩阵

    #2006. 「SCOI2015」小凸玩矩阵   题目描述 小凸和小方是好朋友,小方给小凸一个 N×M N \times MN×M(N≤M N \leq MN≤M)的矩阵 A AA,要求小凸从其中选出 ...

  9. 【BZOJ 4818】 4818: [Sdoi2017]序列计数 (矩阵乘法、容斥计数)

    4818: [Sdoi2017]序列计数 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 560  Solved: 359 Description Al ...

随机推荐

  1. Linux下Redis安装使用教程

    https://redis.io/download 第一步:安装redis需要在有c语言的编译环境下,执行命令安装c语言环境: yum install gcc-c++ https://blog.csd ...

  2. kali渗透windowsXP过程

    文章来源i春秋 这只是一个演示我自己搭建的环境,但是成功率非常高的,对方可以是其系统,首先我开启kali在打开kali终端输入nmap –sP 192.168.1.1/24 这里的ip是我的网关地址你 ...

  3. centos docker安装和使用

    系统要求:centos7,内核3.10或更高一.配置yum源并安装 vim /etc/yum.repos.d/docker.repos [dockerrepo] name=Docker Resposi ...

  4. Setting Up Swagger 2 with a Spring REST API

    Last modified: August 30, 2016 REST, SPRING by baeldung If you're new here, join the next webinar: & ...

  5. Tools - Vim

    Vim 简明 Vim 练级攻略 基础设置 在vim界面点击":"然后进行设置,但只会在当前vim界面生效: 添加相关设置在vim配置文件(例如"/etc/vimrc&qu ...

  6. javascript实现二分法

    js 实现数组查找二分法 二分法实现原理:二分查找可以解决已经排好序数组的查找问题:只要数组中包含target(即要查找的值),那么通过不断缩小包含target数组的范围,最终就可以找到它. 其算法流 ...

  7. 06-搭建master集群

    部署高可用 kubernetes master 集群 kubernetes master 节点包含的组件: kube-apiserver kube-scheduler kube-controller- ...

  8. java 浅谈web系统当中的cookie和session会话机制

    一 Cookie: 1. Cookie翻译为小甜饼,有一种特殊的味道.cookie主要用来在(浏览器)客户端做记号用的.Cookie不属于java,Cookie是一种通用的机制,属于HTTP协议的一部 ...

  9. python 特定份数的数据概率统计(原创)

    使用numpy模块中的histogram函数模块 Histogram(a,bins=10,range=None,normed=False,weights=None)其中, a是保存待统计数据的数组, ...

  10. git新建远程分支后 pycharm本地看不到 处理方式

    远程仓库新建分支:odoo_test_env 首先切换到本地代码git init目录:git remote update origin --prune odoo@odoo-test:~/odoosha ...