1、KNN近邻法

  • KNN模型由三个基本要素决定:

    • 距离度量:其中欧式距离一般误差最小,\(x_{i} 和 x_{j}\)为两个样本点:\[L_{2}(x_{i}, x_{j}) = (\sum\limits_{l=1}^{n} |x_{i}^{(l)} - x_{j}^{(l)}|)\]

    • k值的选择:k较小->近似误差会减小,估计误差会增大,模型变复杂,容易过拟合;k较大->估计误差减小,近似误差增大,模型变简单。k值一般取一个比较小的数值。

    • 分类决策规则:分类损失函数是误分类率:

\[L = \frac{1}{k} \sum\limits_{x_{i} \in N_{k}(x)} I(y_{i} \ne c_{j}) = 1 - \frac{1}{k} \sum\limits_{x_{i} \in N_{k}(x)} I(y_{i} = c_{j}) \]

要使误分类率最小,即经验风险最小,就要使$\sum\limits_{x_{i} \in N_{k}(x)} I(y_{i} = c_{j}) $最大,所以多数表决规则等价于经验风险最小化。

  • KNN算法流程:

    1. 输入:训练数据集D; 输出:实例x所属的类y。

    2. 根据给定的距离度量,在训练集D中找到与x最近邻的k个点,涵盖这k个点的x邻域记作\(N_{k}(x)\);

    3. 在\(N_{k}(x)\)中根据分类决策规则决定x的类别y(如多数表决):

\[y = arg \ max_{c_{j}} \sum\limits_{x_{i} \in N_{k}(x)} I(y_{i}=c_{j})\]

其中\(I\)为指示函数,即当\(y_{i}=c_{j}\)时\(I\)为1,否则\(I\)为0;

  • kd树:是一种对k维空间中的实例点进行存储以便对其进行快速检索的树形数据结构。其选择训练实例点在选定坐标轴上的中位数为切分点,从而将实例分配为两部分,依次循环构建树形结构。目标点的最近邻一定在以目标点为中心并通过当前最近点的超球体的内部。

机器学习 之KNN近邻法的更多相关文章

  1. 机器学习中 K近邻法(knn)与k-means的区别

    简介 K近邻法(knn)是一种基本的分类与回归方法.k-means是一种简单而有效的聚类方法.虽然两者用途不同.解决的问题不同,但是在算法上有很多相似性,于是将二者放在一起,这样能够更好地对比二者的异 ...

  2. 机器学习入门KNN近邻算法(一)

    1 机器学习处理流程: 2 机器学习分类: 有监督学习 主要用于决策支持,它利用有标识的历史数据进行训练,以实现对新数据的表示的预测 1 分类 分类计数预测的数据对象是离散的.如短信是否为垃圾短信,用 ...

  3. 【机器学习速成宝典】模型篇04k近邻法【kNN】(Python版)

    目录 什么是k近邻算法 模型的三个基本要素 构造kd树 kd树的最近邻搜索 kd树的k近邻搜索 Python代码(sklearn库) 什么是K近邻算法(k-Nearest Neighbor,kNN) ...

  4. K近邻法(KNN)原理小结

    K近邻法(k-nearst neighbors,KNN)是一种很基本的机器学习方法了,在我们平常的生活中也会不自主的应用.比如,我们判断一个人的人品,只需要观察他来往最密切的几个人的人品好坏就可以得出 ...

  5. 机器学习之K近邻算法(KNN)

    机器学习之K近邻算法(KNN) 标签: python 算法 KNN 机械学习 苛求真理的欲望让我想要了解算法的本质,于是我开始了机械学习的算法之旅 from numpy import * import ...

  6. k近邻法(KNN)知识点概括

    分类一般分为两种: 积极学习法:先根据训练集构造模型,然后根据模型对测试集分类 消极学习法:推迟建模,先简单存储训练集,等到给定测试集时再进行建模,如KNN算法. 1. 简述 KNN的核心思想就是:物 ...

  7. 机器学习之利用KNN近邻算法预测数据

    前半部分是简介, 后半部分是案例 KNN近邻算法: 简单说就是采用测量不同特征值之间的距离方法进行分类(k-Nearest Neighbor,KNN) 优点: 精度高.对异常值不敏感.无数据输入假定  ...

  8. 机器学习PR:k近邻法分类

    k近邻法是一种基本分类与回归方法.本章只讨论k近邻分类,回归方法将在随后专题中进行. 它可以进行多类分类,分类时根据在样本集合中其k个最近邻点的类别,通过多数表决等方式进行预测,因此不具有显式的学习过 ...

  9. k近邻法(kNN)

    <统计学习方法>(第二版)第3章 3 分类问题中的k近邻法 k近邻法不具有显式的学习过程. 3.1 算法(k近邻法) 根据给定的距离度量,在训练集\(T\)中找出与\(x\)最邻近的\(k ...

随机推荐

  1. 自己用纯C++实现简单的QT中信号与槽机制

    前天在我很久以前的一篇博文 (http://blog.csdn.net/liukang325/article/details/45742675) 中有人回复说看到我的博文很激动,希望我详细介绍一下信号 ...

  2. 深度学习基础(一)LeNet_Gradient-Based Learning Applied to Document Recognition

    作者:Yann LeCun,Leon Botton, Yoshua Bengio,and Patrick Haffner 这篇论文内容较多,这里只对部分内容进行记录: 以下是对论文原文的翻译: 在传统 ...

  3. typescript interface 泛型

    interface interface Obj { [index: string]: any; } class Person { name: string; } let obj: obj = { na ...

  4. qt opencv编译错误 /usr/local/lib/libopencv_imgcodecs.so.3.1:-1: error: error adding symbols: DSO missing from command line

    转载自:http://tbfungeek.github.io/2016/03/05/Opencv-%E5%AE%89%E8%A3%85%E8%BF%87%E7%A8%8B%E4%B8%AD%E5%87 ...

  5. (转)git 忽略规则

    对于经常使用Git的朋友来说,.gitignore配置一定不会陌生.废话不说多了,接下来就来说说这个.gitignore的使用. 首先要强调一点,这个文件的完整文件名就是".gitignor ...

  6. Redis入门到高可用(十九)——Redis Sentinel

    一.Redis  Sentinel架构     二.redis sentinel安装与配置 四.客户端连接Sentinel            四.实现原理—— 故障转移演练(客户端高可用) 五.实 ...

  7. vs安装问题

    1 首先windows update异常,导致vs2015的一个安装不上,先试着修一下: https://support.microsoft.com/zh-cn/help/2629484 如果提示:“ ...

  8. pandas处理时间序列(2):DatetimeIndex、索引和选择、含有重复索引的时间序列、日期范围与频率和移位、时间区间和区间算术

    一.时间序列基础 1. 时间戳索引DatetimeIndex 生成20个DatetimeIndex from datetime import datetime dates = pd.date_rang ...

  9. 日志采集器windows客户端的配置释义

    <Extension json> Module xm_json </Extension> <Extension charconv> Module xm_charco ...

  10. C++ WINDOWS 防多开

    我们有些程序是可以同时运行多个进程,典型的像Visual Studio.但有些就能一次运行一个进程.比如Outlook.那你可能会问啥时可以让它同时打开多个应用程序,啥时只能一个啊.这个主要看进程间是 ...