[code=python]
import os
import sys
import time import numpy import shelve import theano
import theano.tensor as T
from theano.tensor.shared_randomstreams import RandomStreams class dA(object):
"""Denoising Auto-Encoder class (dA) A denoising autoencoders tries to reconstruct the input from a corrupted
version of it by projecting it first in a latent space and reprojecting
it afterwards back in the input space. Please refer to Vincent et al.,2008
for more details. If x is the input then equation (1) computes a partially
destroyed version of x by means of a stochastic mapping q_D. Equation (2)
computes the projection of the input into the latent space. Equation (3)
computes the reconstruction of the input, while equation (4) computes the
reconstruction error. .. math:: \tilde{x} ~ q_D(\tilde{x}|x) (1) y = s(W \tilde{x} + b) (2) x = s(W' y + b') (3) L(x,z) = -sum_{k=1}^d [x_k \log z_k + (1-x_k) \log( 1-z_k)] (4) """ def __init__(
self,
numpy_rng,
theano_rng=None,
input=None,
#n_visible=784,
n_hidden=100,
W=None,
bhid=None,
#bvis=None
):
"""
Initialize the dA class by specifying the number of visible units (the
dimension d of the input ), the number of hidden units ( the dimension
d' of the latent or hidden space ) and the corruption level. The
constructor also receives symbolic variables for the input, weights and
bias. Such a symbolic variables are useful when, for example the input
is the result of some computations, or when weights are shared between
the dA and an MLP layer. When dealing with SdAs this always happens,
the dA on layer 2 gets as input the output of the dA on layer 1,
and the weights of the dA are used in the second stage of training
to construct an MLP. :type numpy_rng: numpy.random.RandomState
:param numpy_rng: number random generator used to generate weights :type theano_rng: theano.tensor.shared_randomstreams.RandomStreams
:param theano_rng: Theano random generator; if None is given one is
generated based on a seed drawn from `rng` :type input: theano.tensor.TensorType
:param input: a symbolic description of the input or None for
standalone dA :type n_hidden: int
:param n_hidden: number of hidden units :type W: theano.tensor.TensorType
:param W: Theano variable pointing to a set of weights that should be
shared belong the dA and another architecture; if dA should
be standalone set this to None :type bhid: theano.tensor.TensorType
:param bhid: Theano variable pointing to a set of biases values (for
hidden units) that should be shared belong dA and another
architecture; if dA should be standalone set this to None """
#self.n_visible = n_visible
self.n_hidden = n_hidden # create a Theano random generator that gives symbolic random values
if not theano_rng:
theano_rng = RandomStreams(numpy_rng.randint(2 ** 30)) # note : W' was written as `W_prime` and b' as `b_prime`
if not W:
# W is initialized with `initial_W` which is uniformely sampled
# from -4*sqrt(6./(n_visible+n_hidden)) and
# 4*sqrt(6./(n_hidden+n_visible))the output of uniform if
# converted using asarray to dtype
# theano.config.floatX so that the code is runable on GPU
initial_W = numpy.asarray(
numpy_rng.uniform(
low=-4 * numpy.sqrt(6. / (n_hidden + n_hidden)),
high=4 * numpy.sqrt(6. / (n_hidden + n_hidden)),
size=(n_hidden, n_hidden)
),
dtype=theano.config.floatX
)
W=theano.shared(value=initial_W, name='W', borrow=True) '''
if not bvis:
bvis = theano.shared(
value=numpy.zeros(
n_visible,
dtype=theano.config.floatX
),
borrow=True
)
'''
if not bhid:
bhid = theano.shared(
value=numpy.zeros(
n_hidden,
dtype=theano.config.floatX
),
name='b',
borrow=True
) self.W = W
# b corresponds to the bias of the hidden
self.b = bhid
# b_prime corresponds to the bias of the visible
#self.b_prime = bvis
# tied weights, therefore W_prime is W transpose
#self.W_prime = self.W.T
self.theano_rng = theano_rng
# if no input is given, generate a variable representing the input
if input is None:
# we use a matrix because we expect a minibatch of several
# examples, each example being a row
self.x = T.dmatrix(name='input')
else:
self.x = input self.params = [self.W, self.b]
# end-snippet-1
def get_hidden_values(self):
""" Computes the values of the hidden layer """
return T.sum(T.nnet.sigmoid(T.dot(self.x, self.W) + self.b),axis = 0) '''
def get_corrupted_input(self, input, corruption_level):
"""This function keeps ``1-corruption_level`` entries of the inputs the
same and zero-out randomly selected subset of size ``coruption_level``
Note : first argument of theano.rng.binomial is the shape(size) of
random numbers that it should produce
second argument is the number of trials
third argument is the probability of success of any trial this will produce an array of 0s and 1s where 1 has a
probability of 1 - ``corruption_level`` and 0 with
``corruption_level`` The binomial function return int64 data type by
default. int64 multiplicated by the input
type(floatX) always return float64. To keep all data
in floatX when floatX is float32, we set the dtype of
the binomial to floatX. As in our case the value of
the binomial is always 0 or 1, this don't change the
result. This is needed to allow the gpu to work
correctly as it only support float32 for now. """
return self.theano_rng.binomial(size=input.shape, n=1,
p=1 - corruption_level,
dtype=theano.config.floatX) * input
'''
''' def get_reconstructed_input(self, hidden):
"""Computes the reconstructed input given the values of the
hidden layer """
return T.nnet.sigmoid(T.dot(hidden, self.W_prime) + self.b_prime) def get_cost_updates(self, corruption_level, learning_rate):
""" This function computes the cost and the updates for one trainng
step of the dA """ #tilde_x = self.get_corrupted_input(self.x, corruption_level)
y = self.get_hidden_values(tilde_x)
#z = self.get_reconstructed_input(y)
# note : we sum over the size of a datapoint; if we are using
# minibatches, L will be a vector, with one entry per
# example in minibatch
L = - T.sum(self.x * T.log(z) + (1 - self.x) * T.log(1 - z), axis=1)
# note : L is now a vector, where each element is the
# cross-entropy cost of the reconstruction of the
# corresponding example of the minibatch. We need to
# compute the average of all these to get the cost of
# the minibatch
cost = T.mean(L) # compute the gradients of the cost of the `dA` with respect
# to its parameters
gparams = T.grad(cost, self.params)
# generate the list of updates
updates = [
(param, param - learning_rate * gparam)
for param, gparam in zip(self.params, gparams)
] return (cost, updates)
''' x = T.fmatrix('x') # question matrix
y = T.fmatrix('x') # answer matrix
index = T.lscalar()
rng = numpy.random.RandomState(23455)
theano_rng = RandomStreams(rng.randint(2 ** 30))
n_hidden=2
learning_rate=0.1
da_q=[]
da_a=[]
for count in range(n_hidden):
da_q.append(dA(
numpy_rng=rng,
theano_rng=theano_rng,
input=x,
#n_visible=28 * 28,
n_hidden=100
)) for count in range(n_hidden):
da_a.append(dA(
numpy_rng=rng,
theano_rng=theano_rng,
input=y,
#n_visible=28 * 28,
n_hidden=100
))
cost_matrix=[]
for hid_index in range(n_hidden):
cost_matrix.append(T.sum(T.sqr(da_q[hid_index].get_hidden_values()-da_a[hid_index].get_hidden_values())/2))
cost=T.sum(cost_matrix)
params=da_q[0].params+da_a[hid_index].params
for hid_index in range(1,n_hidden):
params+=da_q[hid_index].params+da_a[hid_index].params
gparams=T.grad(cost, params)
updates = []
for param, gparam in zip(params, gparams):
updates.append((param, param - learning_rate * gparam))
db = shelve.open(r'data\training_data\training_data_30_50_1_9_games.dat')
x1=db['train_set1']
q,a=x1[0]
q1,a1=x1[1]
train_da = theano.function(
[index],
cost,
updates=updates,
givens={
x: x1[0][0],
y: x1[0][1]
}
)
print train_da(0)
[/code]

qa_model的更多相关文章

  1. QA系统Match-LSTM代码研读

    QA系统Match-LSTM代码研读 背景 在QA模型中,Match-LSTM是较早提出的,使用Prt-Net边界模型.本文是对阅读其实现代码的总结.主要思路是对照着论文和代码,对论文中模型的关键结构 ...

随机推荐

  1. 30个最常用的Linux系统命令行

    1.cd命令这是一个非常基本,也是大家经常需要使用的命令,它用于切换当前目录,它的参数是要切换到的目录的路径,可以是绝对路径,也可以是相对路径.如:cd /root/Docements # 切换到目录 ...

  2. 第一条:了解Objective-C语言的起源

    第一条:了解Objective-C语言的起源 Objective-C使用的消息结构而非函数调用. Objective-C的重要工作都由"运行组件(runtime component)&quo ...

  3. BSOJ 2414 -- 【JSOI2011】分特产

    Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望 ...

  4. WPFのBorder的用法

    border介绍: 下面是StackPanel中,一个简单的,具有轻微圆角的边框,围绕在一组按钮外面: <Border Margin="5" Padding="5& ...

  5. LCA树链剖分

    LCA(Lowest Common Ancestor 最近公共祖先)定义如下:在一棵树中两个节点的LCA为这两个节点所有的公共祖先中深度最大的节点. 比如这棵树 结点5和6的LCA是2,12和7的LC ...

  6. UCML 参与者关键 与依赖关联外键

  7. solidity ecrecover

    https://solidity.readthedocs.io/en/latest/units-and-global-variables.html#mathematical-and-cryptogra ...

  8. LoadRunner 11安装Micosoft Visual C++ 2005 SP1时提示命令行选项语法错误

    如果安装LoadRunner 11时弹窗提示"Micosoft Visual C++ 2005 SP1 可再发行组件包(X86):'命令行选项语法错误.键入命令 / ? 可获得帮助信息'&q ...

  9. ubuntu apt-get 出现NO_PUBKEY的解决方案

    https://blog.csdn.net/u014221090/article/details/77524682

  10. 20175105 2018-2019-2 《Java程序设计》第八周学习总结

    20175105 2018-2019-2 <Java程序设计>第八周学习总结 教材学习内容总结 第十五章主要内容有:泛型.链表.堆栈.散列映射.树集以及树映射. 泛型:可以使用class名 ...