[code=python]
import os
import sys
import time import numpy import shelve import theano
import theano.tensor as T
from theano.tensor.shared_randomstreams import RandomStreams class dA(object):
"""Denoising Auto-Encoder class (dA) A denoising autoencoders tries to reconstruct the input from a corrupted
version of it by projecting it first in a latent space and reprojecting
it afterwards back in the input space. Please refer to Vincent et al.,2008
for more details. If x is the input then equation (1) computes a partially
destroyed version of x by means of a stochastic mapping q_D. Equation (2)
computes the projection of the input into the latent space. Equation (3)
computes the reconstruction of the input, while equation (4) computes the
reconstruction error. .. math:: \tilde{x} ~ q_D(\tilde{x}|x) (1) y = s(W \tilde{x} + b) (2) x = s(W' y + b') (3) L(x,z) = -sum_{k=1}^d [x_k \log z_k + (1-x_k) \log( 1-z_k)] (4) """ def __init__(
self,
numpy_rng,
theano_rng=None,
input=None,
#n_visible=784,
n_hidden=100,
W=None,
bhid=None,
#bvis=None
):
"""
Initialize the dA class by specifying the number of visible units (the
dimension d of the input ), the number of hidden units ( the dimension
d' of the latent or hidden space ) and the corruption level. The
constructor also receives symbolic variables for the input, weights and
bias. Such a symbolic variables are useful when, for example the input
is the result of some computations, or when weights are shared between
the dA and an MLP layer. When dealing with SdAs this always happens,
the dA on layer 2 gets as input the output of the dA on layer 1,
and the weights of the dA are used in the second stage of training
to construct an MLP. :type numpy_rng: numpy.random.RandomState
:param numpy_rng: number random generator used to generate weights :type theano_rng: theano.tensor.shared_randomstreams.RandomStreams
:param theano_rng: Theano random generator; if None is given one is
generated based on a seed drawn from `rng` :type input: theano.tensor.TensorType
:param input: a symbolic description of the input or None for
standalone dA :type n_hidden: int
:param n_hidden: number of hidden units :type W: theano.tensor.TensorType
:param W: Theano variable pointing to a set of weights that should be
shared belong the dA and another architecture; if dA should
be standalone set this to None :type bhid: theano.tensor.TensorType
:param bhid: Theano variable pointing to a set of biases values (for
hidden units) that should be shared belong dA and another
architecture; if dA should be standalone set this to None """
#self.n_visible = n_visible
self.n_hidden = n_hidden # create a Theano random generator that gives symbolic random values
if not theano_rng:
theano_rng = RandomStreams(numpy_rng.randint(2 ** 30)) # note : W' was written as `W_prime` and b' as `b_prime`
if not W:
# W is initialized with `initial_W` which is uniformely sampled
# from -4*sqrt(6./(n_visible+n_hidden)) and
# 4*sqrt(6./(n_hidden+n_visible))the output of uniform if
# converted using asarray to dtype
# theano.config.floatX so that the code is runable on GPU
initial_W = numpy.asarray(
numpy_rng.uniform(
low=-4 * numpy.sqrt(6. / (n_hidden + n_hidden)),
high=4 * numpy.sqrt(6. / (n_hidden + n_hidden)),
size=(n_hidden, n_hidden)
),
dtype=theano.config.floatX
)
W=theano.shared(value=initial_W, name='W', borrow=True) '''
if not bvis:
bvis = theano.shared(
value=numpy.zeros(
n_visible,
dtype=theano.config.floatX
),
borrow=True
)
'''
if not bhid:
bhid = theano.shared(
value=numpy.zeros(
n_hidden,
dtype=theano.config.floatX
),
name='b',
borrow=True
) self.W = W
# b corresponds to the bias of the hidden
self.b = bhid
# b_prime corresponds to the bias of the visible
#self.b_prime = bvis
# tied weights, therefore W_prime is W transpose
#self.W_prime = self.W.T
self.theano_rng = theano_rng
# if no input is given, generate a variable representing the input
if input is None:
# we use a matrix because we expect a minibatch of several
# examples, each example being a row
self.x = T.dmatrix(name='input')
else:
self.x = input self.params = [self.W, self.b]
# end-snippet-1
def get_hidden_values(self):
""" Computes the values of the hidden layer """
return T.sum(T.nnet.sigmoid(T.dot(self.x, self.W) + self.b),axis = 0) '''
def get_corrupted_input(self, input, corruption_level):
"""This function keeps ``1-corruption_level`` entries of the inputs the
same and zero-out randomly selected subset of size ``coruption_level``
Note : first argument of theano.rng.binomial is the shape(size) of
random numbers that it should produce
second argument is the number of trials
third argument is the probability of success of any trial this will produce an array of 0s and 1s where 1 has a
probability of 1 - ``corruption_level`` and 0 with
``corruption_level`` The binomial function return int64 data type by
default. int64 multiplicated by the input
type(floatX) always return float64. To keep all data
in floatX when floatX is float32, we set the dtype of
the binomial to floatX. As in our case the value of
the binomial is always 0 or 1, this don't change the
result. This is needed to allow the gpu to work
correctly as it only support float32 for now. """
return self.theano_rng.binomial(size=input.shape, n=1,
p=1 - corruption_level,
dtype=theano.config.floatX) * input
'''
''' def get_reconstructed_input(self, hidden):
"""Computes the reconstructed input given the values of the
hidden layer """
return T.nnet.sigmoid(T.dot(hidden, self.W_prime) + self.b_prime) def get_cost_updates(self, corruption_level, learning_rate):
""" This function computes the cost and the updates for one trainng
step of the dA """ #tilde_x = self.get_corrupted_input(self.x, corruption_level)
y = self.get_hidden_values(tilde_x)
#z = self.get_reconstructed_input(y)
# note : we sum over the size of a datapoint; if we are using
# minibatches, L will be a vector, with one entry per
# example in minibatch
L = - T.sum(self.x * T.log(z) + (1 - self.x) * T.log(1 - z), axis=1)
# note : L is now a vector, where each element is the
# cross-entropy cost of the reconstruction of the
# corresponding example of the minibatch. We need to
# compute the average of all these to get the cost of
# the minibatch
cost = T.mean(L) # compute the gradients of the cost of the `dA` with respect
# to its parameters
gparams = T.grad(cost, self.params)
# generate the list of updates
updates = [
(param, param - learning_rate * gparam)
for param, gparam in zip(self.params, gparams)
] return (cost, updates)
''' x = T.fmatrix('x') # question matrix
y = T.fmatrix('x') # answer matrix
index = T.lscalar()
rng = numpy.random.RandomState(23455)
theano_rng = RandomStreams(rng.randint(2 ** 30))
n_hidden=2
learning_rate=0.1
da_q=[]
da_a=[]
for count in range(n_hidden):
da_q.append(dA(
numpy_rng=rng,
theano_rng=theano_rng,
input=x,
#n_visible=28 * 28,
n_hidden=100
)) for count in range(n_hidden):
da_a.append(dA(
numpy_rng=rng,
theano_rng=theano_rng,
input=y,
#n_visible=28 * 28,
n_hidden=100
))
cost_matrix=[]
for hid_index in range(n_hidden):
cost_matrix.append(T.sum(T.sqr(da_q[hid_index].get_hidden_values()-da_a[hid_index].get_hidden_values())/2))
cost=T.sum(cost_matrix)
params=da_q[0].params+da_a[hid_index].params
for hid_index in range(1,n_hidden):
params+=da_q[hid_index].params+da_a[hid_index].params
gparams=T.grad(cost, params)
updates = []
for param, gparam in zip(params, gparams):
updates.append((param, param - learning_rate * gparam))
db = shelve.open(r'data\training_data\training_data_30_50_1_9_games.dat')
x1=db['train_set1']
q,a=x1[0]
q1,a1=x1[1]
train_da = theano.function(
[index],
cost,
updates=updates,
givens={
x: x1[0][0],
y: x1[0][1]
}
)
print train_da(0)
[/code]

qa_model的更多相关文章

  1. QA系统Match-LSTM代码研读

    QA系统Match-LSTM代码研读 背景 在QA模型中,Match-LSTM是较早提出的,使用Prt-Net边界模型.本文是对阅读其实现代码的总结.主要思路是对照着论文和代码,对论文中模型的关键结构 ...

随机推荐

  1. 【PAT】B1057 数零壹(20 分)

    简单题,简单字符串处理加简单数学进制转换 #include<stdio.h> #include<string.h> #include<ctype.h> int ma ...

  2. Linux远程访问及控制(SSH)

    1.ssh协议:用于远程登录,端口号:22/tcp 配置文件: 1)服务器端口:/etc/ssh/sshd_config 2)客户端 :/etc/ssh/ssh_config 2.服务器监听选项: U ...

  3. 转:tcpdump抓包分析(强烈推荐)

    转自:https://mp.weixin.qq.com/s?__biz=MzAxODI5ODMwOA==&mid=2666539134&idx=1&sn=5166f0aac71 ...

  4. Python作业第一课

    零基础开始学习,最近周边的同学们都在学习,我也来试试,嘿嘿,都写下来,下次不记得了还能来看看~~ Python作业第一课1)登陆,三次输入锁定,下次不允许登陆2)设计一个三级菜单,菜单内容可自行定义, ...

  5. Laravel小项目之第4节 Laravel-通过表单实现新增及操作状态提示功能

    第4节 Laravel-通过表单实现新增及操作状态提示功能 4.1 显示新增表单视图 4.2 通过模型实现新增 4.3 操作状态提示 4.1 显示新增表单视图 修改边栏的链接 \resources\v ...

  6. VsCode语言设置为中文

    一.安装插件 二.Ctrl+shift+p 搜索Configure Display Language 三.修改locale.json { // Defines VS Code's display la ...

  7. Git-本地项目和远程项目关联

    此处记录将本地项目与码云仓库关联步骤 1. 本地 Git 配置 配置一下一些基本的信息 $ git config--global user.name "Your Name" $ g ...

  8. AI 信息论

    信息论,主要用于量化信息. 事件发生的概率越大,包含的信息就越少.例如“太阳从东边升起”,信息量就很少. 1.自信息(self-information) 两个独立事件发生所包含的信息,等于各自发生包含 ...

  9. protobuf可变长编码的实现原理

    protobuf中的整数,如int32.int64.uint32.uint64.sint32.sint64.bool和enum,采用可变长编码,即varints. 这样做的好处是,可以节省空间.根据整 ...

  10. (转)用graph-easy描绘kubenetes描绘k8s组件逻辑图

    1.参考: https://xuxinkun.github.io/2018/09/03/graph-easy/ http://bloodgate.com/perl/graph/manual/faq.h ...