[code=python]
import os
import sys
import time import numpy import shelve import theano
import theano.tensor as T
from theano.tensor.shared_randomstreams import RandomStreams class dA(object):
"""Denoising Auto-Encoder class (dA) A denoising autoencoders tries to reconstruct the input from a corrupted
version of it by projecting it first in a latent space and reprojecting
it afterwards back in the input space. Please refer to Vincent et al.,2008
for more details. If x is the input then equation (1) computes a partially
destroyed version of x by means of a stochastic mapping q_D. Equation (2)
computes the projection of the input into the latent space. Equation (3)
computes the reconstruction of the input, while equation (4) computes the
reconstruction error. .. math:: \tilde{x} ~ q_D(\tilde{x}|x) (1) y = s(W \tilde{x} + b) (2) x = s(W' y + b') (3) L(x,z) = -sum_{k=1}^d [x_k \log z_k + (1-x_k) \log( 1-z_k)] (4) """ def __init__(
self,
numpy_rng,
theano_rng=None,
input=None,
#n_visible=784,
n_hidden=100,
W=None,
bhid=None,
#bvis=None
):
"""
Initialize the dA class by specifying the number of visible units (the
dimension d of the input ), the number of hidden units ( the dimension
d' of the latent or hidden space ) and the corruption level. The
constructor also receives symbolic variables for the input, weights and
bias. Such a symbolic variables are useful when, for example the input
is the result of some computations, or when weights are shared between
the dA and an MLP layer. When dealing with SdAs this always happens,
the dA on layer 2 gets as input the output of the dA on layer 1,
and the weights of the dA are used in the second stage of training
to construct an MLP. :type numpy_rng: numpy.random.RandomState
:param numpy_rng: number random generator used to generate weights :type theano_rng: theano.tensor.shared_randomstreams.RandomStreams
:param theano_rng: Theano random generator; if None is given one is
generated based on a seed drawn from `rng` :type input: theano.tensor.TensorType
:param input: a symbolic description of the input or None for
standalone dA :type n_hidden: int
:param n_hidden: number of hidden units :type W: theano.tensor.TensorType
:param W: Theano variable pointing to a set of weights that should be
shared belong the dA and another architecture; if dA should
be standalone set this to None :type bhid: theano.tensor.TensorType
:param bhid: Theano variable pointing to a set of biases values (for
hidden units) that should be shared belong dA and another
architecture; if dA should be standalone set this to None """
#self.n_visible = n_visible
self.n_hidden = n_hidden # create a Theano random generator that gives symbolic random values
if not theano_rng:
theano_rng = RandomStreams(numpy_rng.randint(2 ** 30)) # note : W' was written as `W_prime` and b' as `b_prime`
if not W:
# W is initialized with `initial_W` which is uniformely sampled
# from -4*sqrt(6./(n_visible+n_hidden)) and
# 4*sqrt(6./(n_hidden+n_visible))the output of uniform if
# converted using asarray to dtype
# theano.config.floatX so that the code is runable on GPU
initial_W = numpy.asarray(
numpy_rng.uniform(
low=-4 * numpy.sqrt(6. / (n_hidden + n_hidden)),
high=4 * numpy.sqrt(6. / (n_hidden + n_hidden)),
size=(n_hidden, n_hidden)
),
dtype=theano.config.floatX
)
W=theano.shared(value=initial_W, name='W', borrow=True) '''
if not bvis:
bvis = theano.shared(
value=numpy.zeros(
n_visible,
dtype=theano.config.floatX
),
borrow=True
)
'''
if not bhid:
bhid = theano.shared(
value=numpy.zeros(
n_hidden,
dtype=theano.config.floatX
),
name='b',
borrow=True
) self.W = W
# b corresponds to the bias of the hidden
self.b = bhid
# b_prime corresponds to the bias of the visible
#self.b_prime = bvis
# tied weights, therefore W_prime is W transpose
#self.W_prime = self.W.T
self.theano_rng = theano_rng
# if no input is given, generate a variable representing the input
if input is None:
# we use a matrix because we expect a minibatch of several
# examples, each example being a row
self.x = T.dmatrix(name='input')
else:
self.x = input self.params = [self.W, self.b]
# end-snippet-1
def get_hidden_values(self):
""" Computes the values of the hidden layer """
return T.sum(T.nnet.sigmoid(T.dot(self.x, self.W) + self.b),axis = 0) '''
def get_corrupted_input(self, input, corruption_level):
"""This function keeps ``1-corruption_level`` entries of the inputs the
same and zero-out randomly selected subset of size ``coruption_level``
Note : first argument of theano.rng.binomial is the shape(size) of
random numbers that it should produce
second argument is the number of trials
third argument is the probability of success of any trial this will produce an array of 0s and 1s where 1 has a
probability of 1 - ``corruption_level`` and 0 with
``corruption_level`` The binomial function return int64 data type by
default. int64 multiplicated by the input
type(floatX) always return float64. To keep all data
in floatX when floatX is float32, we set the dtype of
the binomial to floatX. As in our case the value of
the binomial is always 0 or 1, this don't change the
result. This is needed to allow the gpu to work
correctly as it only support float32 for now. """
return self.theano_rng.binomial(size=input.shape, n=1,
p=1 - corruption_level,
dtype=theano.config.floatX) * input
'''
''' def get_reconstructed_input(self, hidden):
"""Computes the reconstructed input given the values of the
hidden layer """
return T.nnet.sigmoid(T.dot(hidden, self.W_prime) + self.b_prime) def get_cost_updates(self, corruption_level, learning_rate):
""" This function computes the cost and the updates for one trainng
step of the dA """ #tilde_x = self.get_corrupted_input(self.x, corruption_level)
y = self.get_hidden_values(tilde_x)
#z = self.get_reconstructed_input(y)
# note : we sum over the size of a datapoint; if we are using
# minibatches, L will be a vector, with one entry per
# example in minibatch
L = - T.sum(self.x * T.log(z) + (1 - self.x) * T.log(1 - z), axis=1)
# note : L is now a vector, where each element is the
# cross-entropy cost of the reconstruction of the
# corresponding example of the minibatch. We need to
# compute the average of all these to get the cost of
# the minibatch
cost = T.mean(L) # compute the gradients of the cost of the `dA` with respect
# to its parameters
gparams = T.grad(cost, self.params)
# generate the list of updates
updates = [
(param, param - learning_rate * gparam)
for param, gparam in zip(self.params, gparams)
] return (cost, updates)
''' x = T.fmatrix('x') # question matrix
y = T.fmatrix('x') # answer matrix
index = T.lscalar()
rng = numpy.random.RandomState(23455)
theano_rng = RandomStreams(rng.randint(2 ** 30))
n_hidden=2
learning_rate=0.1
da_q=[]
da_a=[]
for count in range(n_hidden):
da_q.append(dA(
numpy_rng=rng,
theano_rng=theano_rng,
input=x,
#n_visible=28 * 28,
n_hidden=100
)) for count in range(n_hidden):
da_a.append(dA(
numpy_rng=rng,
theano_rng=theano_rng,
input=y,
#n_visible=28 * 28,
n_hidden=100
))
cost_matrix=[]
for hid_index in range(n_hidden):
cost_matrix.append(T.sum(T.sqr(da_q[hid_index].get_hidden_values()-da_a[hid_index].get_hidden_values())/2))
cost=T.sum(cost_matrix)
params=da_q[0].params+da_a[hid_index].params
for hid_index in range(1,n_hidden):
params+=da_q[hid_index].params+da_a[hid_index].params
gparams=T.grad(cost, params)
updates = []
for param, gparam in zip(params, gparams):
updates.append((param, param - learning_rate * gparam))
db = shelve.open(r'data\training_data\training_data_30_50_1_9_games.dat')
x1=db['train_set1']
q,a=x1[0]
q1,a1=x1[1]
train_da = theano.function(
[index],
cost,
updates=updates,
givens={
x: x1[0][0],
y: x1[0][1]
}
)
print train_da(0)
[/code]

qa_model的更多相关文章

  1. QA系统Match-LSTM代码研读

    QA系统Match-LSTM代码研读 背景 在QA模型中,Match-LSTM是较早提出的,使用Prt-Net边界模型.本文是对阅读其实现代码的总结.主要思路是对照着论文和代码,对论文中模型的关键结构 ...

随机推荐

  1. Flutter在Windows平台下的安装配置

    目录 1. 安装 Flutter SDK2. 设置环境变量3. Flutter doctor4. 安装 Android Studio5. 启动 Android Studio, 安装 Android S ...

  2. 百度-淘宝-360搜索引擎搜索API

    百度(baidu) Api地址:http://suggestion.baidu.com/su?wd=设计&p=3&cb=window.bdsug.sug window.bdsug.su ...

  3. 4.5Python数据类型(5)之列表类型

    返回总目录 目录: 1.列表的定义 2.列表的常规操作 3.列表的额外操作 (一)列表的定义: 列表的定义 [var1, var2, --, var n ] # (1)列表的定义 [var1, var ...

  4. SAP系统产品历史与分类

    SAP R/1---实时会计辅助财务的系统,最早叫RF系统.由原来批处理系统(数据输入后,由服务器在特定的时间分批处理).创造性的变为输入马上由计算机处理. SAP R/2—创造性的使用“basis” ...

  5. python3编写网络爬虫13-Ajax数据爬取

    一.Ajax数据爬取 1. 简介:Ajax 全称Asynchronous JavaScript and XML 异步的Javascript和XML. 它不是一门编程语言,而是利用JavaScript在 ...

  6. golang类型判断

    _.ok:=interface{}(a).(B) 此语句用于判断对象a是否是B类型 也可以判断对象a是否实现了B接口 package main import "fmt" type ...

  7. JDK10源码阅读--String

    jdk源码里对String的介绍: String 是不可变的,一旦被创建其值不能被改变. String buffers 支持可变String. 因为String是不可变的, 所以它们可以被共享. 例如 ...

  8. C#异步编程の-------异步编程模型(APM)

    术语解释: APM               异步编程模型, Asynchronous Programming Model EAP                基于事件的异步编程模式, Event ...

  9. vue - 状态管理器 Vuex

    状态管理 vuex是一个专门为vue.js设计的集中式状态管理架构.状态?我把它理解为在data中的属性需要共享给其他vue组件使用的部分,就叫做状态.简单的说就是data中需要共用的属性.

  10. 转载 Spring详细教程

    SpringMVC学习笔记---- 一.SpringMVC基础入门,创建一个HelloWorld程序 1.首先,导入SpringMVC需要的jar包. 2.添加Web.xml配置文件中关于Spring ...