题目描述

小Q同学现在沉迷炉石传说不能自拔。他发现一张名为克苏恩的牌很不公平。如果你不玩炉石传说,不必担心,小Q
同学会告诉你所有相关的细节。炉石传说是这样的一个游戏,每个玩家拥有一个 30 点血量的英雄,并且可以用牌
召唤至多 7 个随从帮助玩家攻击对手,其中每个随从也拥有自己的血量和攻击力。小Q同学有很多次游戏失败都是
因为对手使用了克苏恩这张牌,所以他想找到一些方法来抵御克苏恩。他去求助职业炉石传说玩家椎名真白,真白
告诉他使用奴隶主这张牌就可以啦。如果你不明白我上面在说什么,不必担心,小Q同学会告诉你他想让你做什么
。现在小Q同学会给出克苏恩的攻击力是 K ,表示克苏恩会攻击 K 次,每次会从对方场上的英雄和随从中随机选
择一个并对其产生 1 点伤害。现在对方有一名克苏恩,你有一些奴隶主作为随从,每名奴隶主的血量是给定的。
如果克苏恩攻击了你的一名奴隶主,那么这名奴隶主的血量会减少 1 点,当其血量小于等于 0 时会死亡,如果受
到攻击后不死亡,并且你的随从数量没有达到 7 ,这名奴隶主会召唤一个拥有 3 点血量的新奴隶主作为你的随从
;如果克苏恩攻击了你的英雄,你的英雄会记录受到 1 点伤害。你应该注意到了,每当克苏恩进行一次攻击,你
场上的随从可能发生很大的变化。小Q同学为你假设了克苏恩的攻击力,你场上分别有 1 点、 2 点、 3 点血量的
奴隶主数量,你可以计算出你的英雄受到的总伤害的期望值是多少吗?

输入

输入包含多局游戏。
第一行包含一个整数 T (T<100) ,表示游戏的局数。
每局游戏仅占一行,包含四个非负整数 K, A, B 和 C ,表示克苏恩的攻击力是 K ,你有 A 个 1 点血量的奴隶
主, B 个 2 点血量的奴隶主, C 个 3 点血量的奴隶主。
保证 K 是小于 50 的正数, A+B+C 不超过 7 。

输出

对于每局游戏,输出一个数字表示总伤害的期望值,保留两位小数。

样例输入

1
1 1 1 1

样例输出

0.25
 
 
由于结束状态不确定,我们按照期望dp常规套路倒着dp。
设f[i][j][k][l]表示还剩下i次攻击,剩下1、2、3点血的奴隶主分别有j、k、l个时的期望总伤害。
转移时分别讨论当次攻击目标是谁转移即可。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
double f[51][8][8][8];
int T,K,A,B,C;
int main()
{
for(int i=1;i<=50;i++)
{
for(int j=0;j<=7;j++)
{
for(int k=0;k+j<=7;k++)
{
for(int l=0;l+k+j<=7;l++)
{
if(j)
{
f[i][j][k][l]+=(double)j/(j+k+l+1)*f[i-1][j-1][k][l];
}
if(k)
{
f[i][j][k][l]+=(double)k/(j+k+l+1)*f[i-1][j+1][k-1][l+(j+k+l<7)];
}
if(l)
{
f[i][j][k][l]+=(double)l/(j+k+l+1)*f[i-1][j][k+1][l-1+(j+k+l<7)];
}
f[i][j][k][l]+=(double)1/(j+k+l+1)*(f[i-1][j][k][l]+1);
}
}
}
}
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d%d",&K,&A,&B,&C);
printf("%.2lf\n",f[K][A][B][C]);
}
}

BZOJ4832[Lydsy1704月赛]抵制克苏恩——期望DP的更多相关文章

  1. BZOJ4832: [Lydsy1704月赛]抵制克苏恩(期望DP)

    Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 913  Solved: 363[Submit][Status][Discuss] Description ...

  2. 【bzoj4832】[Lydsy1704月赛]抵制克苏恩 期望dp

    Description 小Q同学现在沉迷炉石传说不能自拔.他发现一张名为克苏恩的牌很不公平.如果你不玩炉石传说,不必担心,小Q 同学会告诉你所有相关的细节.炉石传说是这样的一个游戏,每个玩家拥有一个 ...

  3. BZOJ.4832.[Lydsy1704月赛]抵制克苏恩(期望DP)

    题目链接 \(f[s][i][j][k]\)表示还剩\(s\)次攻击,分别有\(i,j,k\)个血量为\(1,2,3\)的奴隶主时,期望受到伤害. 因为期望是倒推,所以这么表示从后往前求,注意\(a, ...

  4. 【期望dp】bzoj4832: [Lydsy1704月赛]抵制克苏恩

    这个题面怎么这么歧义…… Description 小Q同学现在沉迷炉石传说不能自拔.他发现一张名为克苏恩的牌很不公平.如果你不玩炉石传说,不必担心,小Q 同学会告诉你所有相关的细节.炉石传说是这样的一 ...

  5. BZOJ4832: [Lydsy1704月赛]抵制克苏恩(记忆化&期望)

    Description 小Q同学现在沉迷炉石传说不能自拔.他发现一张名为克苏恩的牌很不公平.如果你不玩炉石传说,不必担心,小Q 同学会告诉你所有相关的细节.炉石传说是这样的一个游戏,每个玩家拥有一个 ...

  6. BZOJ4832: [Lydsy1704月赛]抵制克苏恩 (记忆化搜索 + 概率DP)

    题意:模拟克苏恩打奴隶战对对方英雄所造成的伤害 题解:因为昨(今)天才写过记忆化搜索 所以这个就是送经验了 1A还冲了个榜 但是我惊奇的发现我数组明明就比数据范围开小了啊??? #include &l ...

  7. [bzoj4832][Lydsy1704月赛]抵制克苏恩

    题目大意:有一个英雄和若干个所从,克苏恩会攻击$K$次,每次回随机攻击对方的一个人,造成$1$的伤害.现在对方有一名克苏恩,你有一些随从.如果克苏恩攻击了你的一名随从,若这名随从不死且你的随从数量不到 ...

  8. 【BZOJ 4832】 [Lydsy2017年4月月赛] 抵制克苏恩 期望概率dp

    打记录的题打多了,忘了用开维记录信息了......我们用f[i][j][l][k]表示已经完成了i次攻击,随从3血剩j个,2血剩l个,1血剩k个,这样我们求出每个状态的概率,从而求出他们对答案的贡献并 ...

  9. [Bzoj4832][Lydsy2017年4月月赛]抵制克苏恩 (期望dp)

    4832: [Lydsy2017年4月月赛]抵制克苏恩 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 673  Solved: 261[Submit][ ...

随机推荐

  1. 树莓派学习笔记(7):利用bypy实现树莓派NAS同步百度云

    转载请注明:@小五义http://www.cnblogs.com/xiaowuyiQQ群:64770604 树莓派制作NAS过程详见http://www.cnblogs.com/xiaowuyi/p/ ...

  2. ASP.NET Core 释放 IDisposable 对象的四种方法

    本文翻译自<Four ways to dispose IDisposables in ASP.NET Core>,由于水平有限,故无法保证翻译完全正确,欢迎指出错误.谢谢! IDispos ...

  3. Tensorflow[源码安装时bazel行为解析]

    0. 引言 通过源码方式安装,并进行一定程度的解读,有助于理解tensorflow源码,本文主要基于tensorflow v1.8源码,并借鉴于如何阅读TensorFlow源码. 首先,自然是需要去b ...

  4. TCP/IP协议---ARP协议

    ARP协议 以下就默认在以太网类型的网络. 这个协议的作用是通过ip地址(32bit)找到硬件地址(48bit).顺便提一下:在一个局域网里,大家常见的设备交换机,交换机上的主机在互相通信时,实际用的 ...

  5. Luogu4652 CEOI2017 One-Way Streets 树上差分

    传送门 题意:给出$N$个点.$M$条无向边的图,现在你需要给它定向,并满足$Q$个条件:每个条件形如$(x_i,y_i)$,表示定向之后需要存在路径从$x_i$走向$y_i$.问每条边是否都有唯一定 ...

  6. [转]Web 通信 之 长连接、长轮询(long polling)

    本篇文章转载自Web 通信之长连接.长轮询(longpolling),版权归作者所有. 转者按:随着技术的发展,在HTML5中,可以通过WebSocket技术来完成长连接的开发,虽然如此,本文依然存在 ...

  7. OpenBLAS简介及在Windows7 VS2013上源码的编译过程

    OpenBLAS(Open Basic Linear Algebra Subprograms)是开源的基本线性代数子程序库,是一个优化的高性能多核BLAS库,主要包括矩阵与矩阵.矩阵与向量.向量与向量 ...

  8. R绘图 第七篇:绘制条形图(ggplot2)

    使用geom_bar()函数绘制条形图,条形图的高度通常表示两种情况之一:每组中的数据的个数,或数据框中列的值,高度表示的含义是由geom_bar()函数的参数stat决定的,stat在geom_ba ...

  9. REST-framework快速构建API--源码解析

    一.APIView 通过APIView实现API的过程如下: urls.py url(r'^books/$', views.BookView.as_view(),name="books&qu ...

  10. 移动端触摸(touch)事件

    移动端时代已经到来,作为前端开发的我们没有理由也不应该坐井观天,而是勇敢地跳出心里的那口井,去拥抱蔚蓝的天空.该来的总会来,我们要做的就是接受未知的挑战.正如你所看到的,这是一篇关于移动端触摸事件的文 ...