BZOJ1304 CQOI2009叶子的染色(树形dp)
令f[i]表示i子树内最少染色次数,加上012状态分别表示该子树内叶节点已均被满足、存在黑色叶节点未被满足、存在白色叶节点未被满足,考虑i节点涂色情况即可转移。事实上贪心也可以。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 100010
int n,m,f[N][],c[N],p[N],t=;
struct data{int to,nxt;
}edge[N<<];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
void dfs(int k,int from)
{
if (k<=m) f[k][]=,f[k][c[k]]=,f[k][c[k]]=n;
else
{
f[k][]=f[k][]=f[k][]=;
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=from)
{
dfs(edge[i].to,k);
f[k][]+=f[edge[i].to][];
f[k][]+=min(f[edge[i].to][],f[edge[i].to][]);
f[k][]+=min(f[edge[i].to][],f[edge[i].to][]);
}
f[k][]=min(f[k][],min(f[k][],f[k][])+);
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj1304.in","r",stdin);
freopen("bzoj1304.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
for (int i=;i<=m;i++) c[i]=read()+;
for (int i=;i<n;i++)
{
int x=read(),y=read();
addedge(x,y),addedge(y,x);
}
dfs(n,n);
cout<<f[n][];
return ;
}
BZOJ1304 CQOI2009叶子的染色(树形dp)的更多相关文章
- BZOJ1304: [CQOI2009]叶子的染色 树形dp
Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到每个叶子的简单路径上都至少包含 ...
- 【bzoj1304】[CQOI2009]叶子的染色 树形dp
题目描述 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到每个叶子的简单路径上都至少包含一个有色结点( ...
- BZOJ 1304: [CQOI2009]叶子的染色 树形DP + 结论
Code: #include<bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) # ...
- BZOJ1304 CQOI2009 叶子的染色 【树形DP】
BZOJ1304 CQOI2009 叶子的染色 Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方 ...
- 【树形dp】bzoj1304: [CQOI2009]叶子的染色
又是一道优美的dp Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到每个叶子的 ...
- BZOJ1304: [CQOI2009]叶子的染色
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1304 树形dp. 可以发现其实根选在哪里都是没有问题的. f[u][0],f[u][1],f[ ...
- BZOJ_1304_[CQOI2009]叶子的染色_树形DP
BZOJ_1304_[CQOI2009]叶子的染色_树形DP Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白 ...
- 【BZOJ1304】[CQOI2009]叶子的染色(动态规划)
[BZOJ1304][CQOI2009]叶子的染色(动态规划) 题面 BZOJ 洛谷 题解 很简单. 设\(f[i][0/1/2]\)表示以\(i\)为根的子树中,还有颜色为\(0/1/2\)(\(2 ...
- BZOJ 1304: [CQOI2009]叶子的染色
1304: [CQOI2009]叶子的染色 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 566 Solved: 358[Submit][Statu ...
随机推荐
- Luogu3199 HNOI2009 最小圈 分数规划、SPFA
传送门 可以发现它的式子是一个分数规划的式子,所以可以二分答案,将所有边权减掉当前二分值之后跑一边$SPFA$判断负环即可. 然而这道题把$BFS-SPFA$卡掉了却没卡$DFS-SPFA$ 出题人: ...
- echarts 响应式布局
<body> <!-- 为ECharts准备一个具备大小(宽高)的Dom --> <div id="main" style="width: ...
- python 的zip 函数小例子
In [57]: name = ('Tome','Rick','Stephon') In [58]: age = (45,23,55) In [59]: for a,n in zip (name,ag ...
- 案例学python——案例二:连接数据库MySql
调侃的话:案例一跑完之后,欣赏把玩了一番.人就有点飘飘然,昨天除了做饭吃饭,就是玩三国杀,江郎才尽,今天周一,不飘了,敲点代码,看看Python操作数据库有啥不一样的. 前期准备: 1.数据库 电脑上 ...
- Android 安全退出应用程序的方法总结
正常关闭应用程序: 当应用不再使用时,通常需要关闭应用,可以使用以下三种方法关闭android应用: 第一种方法:首先获取当前进程的id,然后杀死该进程. android.os.Process.kil ...
- Zabbix监控系统部署:前端初始化
1. 概述 在上一篇博客<Zabbix监控系统部署:源码安装.md>中,主要进行了zabbix最新版的源码编译安装. (博客园地址:https://www.cnblogs.com/liwa ...
- Js基础---红宝书读书日记(1)-------基本类型和引用类型
JS的变量可能包含两种不同数据类型的值,基本类型和引用类型; 基本类型是指简单的数据段,引用类型是指可能由多个值构成的对象; JS高级程序设计第三章介绍了变量分为 5种简单数据类型(string/nu ...
- zabbix邮件报警功能的验证
zabbix里面设置了很多监控项,有很多重要的监控预警,必须保证zabbix邮件报警功能正常,以确保那些告警信息能及时发送到运维人员的邮箱里. 所以需要每天8:30发一封确认zabbix邮件报警功能正 ...
- Notes of Daily Scrum Meeting(12.22)
今天的团队任务总结如下: 团队成员 今日团队工作 陈少杰 进行网络连接的调试 王迪 优化搜索的算法 金鑫 准备前台的接口,查阅相关的资料 雷元勇 优化算法,对搜索进行测试 高孟烨 修改UI的接口,准备 ...
- 【个人博客作业Week7】软件工程团队项目一轮迭代感想与反思
(发布晚原因:发到团队博客了 一.关于银弹 在佛瑞德·布鲁克斯于1986年发布的<没有银弹:软件工程的本质性与附属性工作>这篇软件工程的经典论文中,作者向我们讲述了软件工程没有银弹这样的理 ...