题目链接 : http://acm.hdu.edu.cn/showproblem.php?pid=6304
多校contest1
 
Problem Description

Chiaki is interested in an infinite sequence a1,a2,a3,..., which is defined as follows:

an={1an−an−1+an−1−an−2n=1,2n≥3

Chiaki would like to know the sum of the first n terms of the sequence, i.e. ∑i=1nai. As this number may be very large, Chiaki is only interested in its remainder modulo (109+7).

Input
There are multiple test cases. The first line of input contains an integer T (1≤T≤105), indicating the number of test cases. For each test case:
The first line contains an integer n (1≤n≤1018).
 
Output

For each test case, output an integer denoting the answer.

 题目大意是求一个 奇怪序列的 前 n 项 和,n最坏情况达 1e18。
开始打了个表,发现在序列是从1开始的连续整数(每个整数出现的次数不同),除了数字 1是出现两次,其他数字 如x 都是出现 lowbit(x)后缀0的个数+1 次。 如2(10) 出现2次 ,3(11) 出现1次,4(100) 出现3次,5(101)出现1次,6(110) 出现2次...
可以发现这是一个十分有特点的(类似2进制,有部分对称性)的序列
接下来我们可以发现如果把1当做出现1次,出现在 2^n 上,如果占满 ,次数总和刚好是 2^(n+1) -1 次,那么多出来的数似乎又没有规律了,这时我们可以利用局部对称与这个和二进制相似的特点,找到 第 n 个数 是数字多少(落在图中的位置),
有两种方法:
第一种 可以知道N(自减一后)对应的准确数字,但不知N落在的数字差几次被填满,不便计算。
 void init(){
P[]=;P[]=;
nP[]=;nP[]=;
for(int i=;i<=;++i){
P[i]=*P[i-];
nP[i]=P[i]-;
}
} ll getbound(ll N){
ll bound=;
for(int i=;i>=;--i){
while(N>=nP[i]){
N-=nP[i];
bound+=P[i-];
}
}
return bound;
}

第二种 完全参照二进制,可知N(自减一后)所落在的数字最近的次数填满数字,后来计算时很方便。

 void init(){
P[]=;P[]=;
nP[]=;nP[]=;
for(int i=;i<=;++i){
P[i]=*P[i-];
nP[i]=P[i]-;
}
} ll getbound(ll& N){
ll bound=;
for(int i=;i>=;--i){
if(N>=nP[i]){
N-=nP[i];
bound+=P[i-];
}
}
return bound;
}

计算时可以可利用每个数字出现的次数,是1(2^0)的倍数的出现过一次,是2(2^1)的倍数的额外出现过一次,是4(2^2)的倍数的又额外出现一次,,,(这也恰恰是后缀0的意义)

在这里贴两份按照上述两种方法写的代码。

 #include <bits/stdc++.h>
using namespace std; typedef long long ll; const ll MOD=1e9+;
ll P[];
ll nP[];
ll a[];
ll arr[]; ll lowbit(ll x){
ll low=x&(-x);
ll cnt=;
while(low>>=){
cnt++;
}
return cnt;
} void init(){
P[]=;P[]=;
nP[]=;nP[]=;
for(int i=;i<=;++i){
P[i]=*P[i-];
nP[i]=P[i]-;
} //a[1]=1;a[2]=1;
//arr[1]=1;arr[2]=2;
//for(int i=3;i<101;i++){
// a[i]=a[i-a[i-1]]+a[i-1-a[i-2]];
// arr[i]=arr[i-1]+a[i];
//} //for(int i=1;i<101;++i) printf("%lld\n",arr[i]); } ll inv(ll a,ll m){
if(a==) return ;
return inv(m%a,m)*(m-m/a)%m;
} ll getbound(ll N){
ll bound=;
for(int i=;i>=;--i){
while(N>=nP[i]){
N-=nP[i];
bound+=P[i-];
}
}
return bound;
} int main(){
//freopen("data.in","r",stdin);
//freopen("data1.out","w",stdout);
init();
int T;
scanf("%d",&T);
while(T--){
ll N;
scanf("%lld",&N);
if(N==) puts("");
else{
ll ans=;
N-=1ll;
ll bound=;
bound=getbound(N);
//printf("bound = %lld\n",bound);
ll cnt=lowbit(bound)+1ll;
ll tot=N;
for(ll i=;i<=cnt;++i){
if(bound==getbound(N+i)) tot++;
else break;
}
ll _m2=inv(,MOD);
//printf("%lld\n",_m2);
for(int i=;i<=;++i){
if(P[i]<=bound){
ll M=bound/P[i];
ans=(ans+(P[i]%MOD)*(M%MOD)%MOD*((M+1ll)%MOD)%MOD*_m2%MOD)%MOD;
}
else break;
}
//printf("1:%lld\n",(ans+1)%MOD);
ans=(ans-(bound)*(tot-N)%MOD+MOD)%MOD;
printf("%lld\n",(ans+1ll)%MOD);
//printf("%I64d %I64d\n",(ans+1ll)%MOD,arr[N+1]);
//最后加一
}
}
return ;
}
 #include <bits/stdc++.h>
using namespace std; typedef long long ll; const ll MOD=1e9+;
ll P[];
ll nP[];
ll a[];
ll arr[]; ll lowbit(ll x){
ll low=x&(-x);
ll cnt=;
while(low>>=){
cnt++;
}
return cnt;
} void init(){
P[]=;P[]=;
nP[]=;nP[]=;
for(int i=;i<=;++i){
P[i]=*P[i-];
nP[i]=P[i]-;
} //a[1]=1;a[2]=1;
//arr[1]=1;arr[2]=2;
//for(int i=3;i<101;i++){
// a[i]=a[i-a[i-1]]+a[i-1-a[i-2]];
// arr[i]=arr[i-1]+a[i];
//} //for(int i=1;i<101;++i) printf("%lld\n",arr[i]); } ll inv(ll a,ll m){
if(a==) return ;
return inv(m%a,m)*(m-m/a)%m;
} ll getbound(ll& N){
ll bound=;
for(int i=;i>=;--i){
if(N>=nP[i]){
N-=nP[i];
bound+=P[i-];
}
}
return bound;
} int main(){
//freopen("data.in","r",stdin);
//freopen("data1.out","w",stdout);
init();
int T;
scanf("%d",&T);
while(T--){
ll N;
scanf("%lld",&N);
if(N==) puts("");
else{
ll ans=;
N-=1ll;
ll bound=;
bound=getbound(N);
//printf("bound = %lld\n",bound);
//ll cnt=lowbit(bound)+1ll;
//ll tot=N;
//for(ll i=1;i<=cnt;++i){
// if(bound==getbound(N+i)) tot++;
// else break;
//}
ll _m2=inv(,MOD);
for(int i=;i<=;++i){
if(P[i]<=bound){
ll M=bound/P[i];
ans=(ans+(P[i]%MOD)*(M%MOD)%MOD*((M+1ll)%MOD)%MOD*_m2%MOD)%MOD; }
else break;
}
//printf("1:%lld\n",(ans+1)%MOD);
ans=(ans+(bound+)*N%MOD)%MOD;
printf("%lld\n",(ans+1ll)%MOD);
//printf("%I64d %I64d\n",(ans+1ll)%MOD,arr[N+1]);
//最后加一
}
}
return ;
}

然后,比赛时WA了两发,其实规律找到了,但错在了计算,算总和时,第一个错误处是没用逆元,第二个错误处是P[i]在N为1e18时奇大,应该先mod在相乘。

血的教训。

Chiaki is interested in an infinite sequence a1,a2,a3,..., which is defined as follows:

an={1an−an−1+an−1−an−2n=1,2n≥3

Chiaki would like to know the sum of the first n terms of the sequence, i.e. ∑i=1nai. As this number may be very large, Chiaki is only interested in its remainder modulo (109+7).

HDU 6304 Chiaki Sequence Revisited的更多相关文章

  1. 2018 杭电多校1 - Chiaki Sequence Revisited

    题目链接 Problem Description Chiaki is interested in an infinite sequence $$$a_1,a_2,a_3,...,$$$ which i ...

  2. HDU - 6304(2018 Multi-University Training Contest 1) Chiaki Sequence Revisited(数学+思维)

    http://acm.hdu.edu.cn/showproblem.php?pid=6304 题意 给出一个数列的定义,a[1]=a[2]=1,a[n]=a[n-a[n-1]]+a[n-1-a[n-2 ...

  3. Chiaki Sequence Revisited HDU - 6304 lowbit找规律法

    Problem Description Chiaki is interested in an infinite sequence a1,a2,a3,..., which is defined as f ...

  4. 【HDOJ6304】Chiaki Sequence Revisited(数学)

    题意:给定一个序列a,定义a[1]=a[2]=1,a[n]=a[n-a[n-1]]+a[n-1-a[n-2]](n>=3),求该序列的前n项和是多少,结果对 1e9+7 取模 n<=1e1 ...

  5. [HDU6304][数学] Chiaki Sequence Revisited-杭电多校2018第一场G

    [HDU6304][数学] Chiaki Sequence Revisited -杭电多校2018第一场G 题目描述 现在抛给你一个数列\(A\) \[ a_n=\begin{cases}1 & ...

  6. HDU 5860 Death Sequence(死亡序列)

    p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: Calibri; font-s ...

  7. HDU 1711 Number Sequence(数列)

    HDU 1711 Number Sequence(数列) Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Ja ...

  8. HDU 1005 Number Sequence(数列)

    HDU 1005 Number Sequence(数列) Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Jav ...

  9. HDU 5860 Death Sequence(递推)

    HDU 5860 Death Sequence(递推) 题目链接http://acm.split.hdu.edu.cn/showproblem.php?pid=5860 Description You ...

随机推荐

  1. java服务端的 极光推送

    项目中用到了极光推送  下面写下笔记 首先引入jar包   下载地址https://docs.jiguang.cn/jpush/resources/(非maven项目的下载地址) <depend ...

  2. 第三章 JQuery: HelloWorld--常见方法--css--选择器--筛选器--属性--效果--事件--数组操作--字符串操作--对象转换

    1.jQuery简介 为了简化JavaScript 的开发, 一些JavsScript 库诞生了. JavaScript库封装了很多预定义的对象和实用函数.能帮助使用者建立有高难度交互的页面, 并且兼 ...

  3. bootstrap弹出模态框会给body加padding的解决方法

    bootstrap弹出模态框会给body加padding,导致页面缩放的解决方法: 在页面或是css文件里加上($paddingSize为less变量,需要改成像素或是其他单位,如12px,1rem) ...

  4. oData 排序字段生成

    跟踪SQL 发现生成的SQL中所有的字段都进行了排序,查看OData原代码,发现如果实体有Key,就按照Key asc 加上指定字段进行排序 属性 EnsureStableOrdering可以控制是否 ...

  5. Tomcat整体架构分析

    下面让我们来看看Tomcat容器的整体结构: 本文的目的是覆盖这张图中所涉及的主要请求处理组件.而上图中的一些高级主题如集群和安全则不是在本文讨论的范围之内. 本图中,Service, Host, C ...

  6. Android开发 :androidstudio device offline

    使用设备调试的时候,偶尔的就会遇到androidstudio device offline,尽管尝试开启/关闭  USB调试 .都无济于事. 如果PC安装了360手机助手就好办了(我的360手机助手 ...

  7. json和数组的区别

    原文地址:https://www.cnblogs.com/zhangjingyun/p/4554054.html 我们都知道,json和数组一样,都可以存数据,但是下面我们来总结一下json和数组的区 ...

  8. 刘志梅2017710101152.《面向对象程序设计(java)》第一周学习总结

    本人学号<面向对象程序设计(java)>第一周学习总结 第一部分:课程准备部分 填写课程学习 平台注册账号, 平台名称 注册账号 博客园:www.cnblogs.com http://ww ...

  9. numpy学习笔记(三)

    (1)numpy的位操作 序号         操作及描述 1.      bitwise_and 对数组元素执行位与操作 2.      bitwise_or 对数组元素执行位或操作 3.      ...

  10. docker 在windows7 、8下的安装

    这里说明一下这种安装方式适合win7 win8的系统环境下安装的,当然win10也可以,但是win10有更好的方式 即安装Docker Toolbox,同时还附加安装 Docker Client fo ...