题目描述

题目原文

描述

Given a set of n integers: A={a1, a2,…, an}, we define a function d(A) as below:

d(A)=max(∑i=s1t1ai+∑j=s2t2aj|1&lt;=s1&lt;=t1&lt;s2&lt;=t2&lt;=n)" role="presentation" style="position: relative;">d(A)=max(∑t1i=s1ai+∑t2j=s2aj|1<=s1<=t1<s2<=t2<=n)d(A)=max(∑i=s1t1ai+∑j=s2t2aj|1<=s1<=t1<s2<=t2<=n)

Your task is to calculate d(A).

输入

The input consists of T(<=30) test cases. The number of test cases (T) is given in the first line of the input.

Each test case contains two lines. The first line is an integer n(2<=n<=50000). The second line contains n integers: a1, a2, …, an. (|ai| <= 10000).There is an empty line after each case.

输出

Print exactly one line for each test case. The line should contain the integer d(A).

样例输入

1

10

1 -1 2 2 3 -3 4 -4 5 -5

样例输出

13

提示

In the sample, we choose {2,2,3,-3,4} and {5}, then we can get the answer.

Huge input,scanf is recommended.

来源

POJ Contest,Author:Mathematica@ZSU

翻译

描述

给定一组N个整数:A ={A1,A2,…,An},我们定义一个函数D(A)如下:

d(A)=max(∑i=s1t1ai+∑j=s2t2aj|1&lt;=s1&lt;=t1&lt;s2&lt;=t2&lt;=n)" role="presentation" style="position: relative;">d(A)=max(∑t1i=s1ai+∑t2j=s2aj|1<=s1<=t1<s2<=t2<=n)d(A)=max(∑i=s1t1ai+∑j=s2t2aj|1<=s1<=t1<s2<=t2<=n)

你的任务是计算D(A)。

输入

输入包括T(T<=30)的测试数据。

测试数据的数目(T),在输入的第一行。每个测试用例包含两行。

第一行是整数n(2<= N <=50000)。第二行包含n个整数:A1,A2,...,An。(|Ai|&lt;=10000)" role="presentation" style="position: relative;">A1,A2,...,An。(|Ai|<=10000)A1,A2,...,An。(|Ai|<=10000)。每个样例例后有一个空行。

输出

每个测试用例只有一行,该行应包含整数D(A)。

提示

在示例中,我们选择{2,2,3,-3,4}和{5},那么我们就可以得到答案。

在有巨大的输入数据时,scanf是最高效的。

来源

POJ 竞赛,作者:Mathematica@ZSU

分析

这是一道比较经典的动态规划题。这道题的难点主要是在怎样将问题分解。我们先从一个点开始,假定这个点的左边有一个最大子段,右边也有一个最大子段。那答案就是每个点左右最大子段的和的最大值。那怎么左右最大字段和呢?我们可以计算左边和右边到i-1,i+1点的最大和,再求i点的最大和,递推公式为:

第一步:leftsum[i]=max(a[i],a[i]+leftsum[i−1])" role="presentation" style="position: relative;">leftsum[i]=max(a[i],a[i]+leftsum[i−1])leftsum[i]=max(a[i],a[i]+leftsum[i−1])

rightsum[i]=max(a[i],a[i]+rightsum[i+1])" role="presentation" style="position: relative;">rightsum[i]=max(a[i],a[i]+rightsum[i+1])rightsum[i]=max(a[i],a[i]+rightsum[i+1])

第二步:leftsum[i]=max(leftsum[i],leftsum[i−1])" role="presentation" style="position: relative;">leftsum[i]=max(leftsum[i],leftsum[i−1])leftsum[i]=max(leftsum[i],leftsum[i−1])

rightsum[i]=max(rightsum[i],rightsum[i+1])" role="presentation" style="position: relative;">rightsum[i]=max(rightsum[i],rightsum[i+1])rightsum[i]=max(rightsum[i],rightsum[i+1])

第三步:d(A)=max(leftsum[i]+rightsum[i+1])" role="presentation" style="position: relative;">d(A)=max(leftsum[i]+rightsum[i+1])d(A)=max(leftsum[i]+rightsum[i+1])

最后输出d(A)即可。

实现

#include<bits/stdc++.h>
using namespace std;
int n,a[50005],fa[50005],fb[50005],maxx;
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
            scanf("%d",&a[i]);
        fa[1]=a[1];
        for(int i=2;i<=n;i++)
            fa[i]=max(a[i],a[i]+fa[i-1]);
        fb[n]=a[n];
        for(int i=n-1;i>0;i--)
            fb[i]=max(a[i],a[i]+fb[i+1]);
        for(int i=2;i<=n;i++)
            fa[i]=max(fa[i],fa[i-1]);//求到位置i左边的最大序列
        for (int i=n-1;i>0;i--)
            fb[i]=max(fb[i],fb[i+1]);//求到位置i右边的最大序列
        maxx=fa[1]+fb[2];
        for(int i=1;i<n;i++)
            maxx=max(maxx,fa[i]+fb[i+1]);//找不同位置i的d(A)值,求出最大值
        printf("%d\n",maxx);
    }
}

[openjudge-动态规划]Maximum sum的更多相关文章

  1. 动态规划——Maximum Sum of 3 Non-Overlapping Subarrays

    这个题对我来说真的是相当难的题目了,严格来讲可能不算是个动态规划的题目,但这个题目对类似的划分多个非重叠连续子区间的问题提供了一个很好解决方案 这个题目需要找三个非重叠的连续子区间,通过维护两个数组将 ...

  2. 动态规划-Maximum Subarray-Maximum Sum Circular Subarray

    2020-02-18 20:57:58 一.Maximum Subarray 经典的动态规划问题. 问题描述: 问题求解: public int maxSubArray(int[] nums) { i ...

  3. ural 1146. Maximum Sum(动态规划)

    1146. Maximum Sum Time limit: 1.0 second Memory limit: 64 MB Given a 2-dimensional array of positive ...

  4. POJ 2479 Maximum sum 解题报告

    Maximum sum Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 40596   Accepted: 12663 Des ...

  5. [LeetCode] Maximum Sum of 3 Non-Overlapping Subarrays 三个非重叠子数组的最大和

    In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum. E ...

  6. POJ2479 Maximum sum[DP|最大子段和]

    Maximum sum Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 39599   Accepted: 12370 Des ...

  7. ural 1146. Maximum Sum

    1146. Maximum Sum Time limit: 0.5 secondMemory limit: 64 MB Given a 2-dimensional array of positive ...

  8. UVa 108 - Maximum Sum(最大连续子序列)

    题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...

  9. 最大子矩阵和 URAL 1146 Maximum Sum

    题目传送门 /* 最大子矩阵和:把二维降到一维,即把列压缩:然后看是否满足最大连续子序列: 好像之前做过,没印象了,看来做过的题目要经常看看:) */ #include <cstdio> ...

  10. URAL 1146 Maximum Sum(最大子矩阵的和 DP)

    Maximum Sum 大意:给你一个n*n的矩阵,求最大的子矩阵的和是多少. 思路:最開始我想的是预处理矩阵,遍历子矩阵的端点,发现复杂度是O(n^4).就不知道该怎么办了.问了一下,是压缩矩阵,转 ...

随机推荐

  1. 框架源码系列三:手写Spring AOP(AOP分析、AOP概念学习、切面实现、织入实现)

    一.AOP分析 问题1:AOP是什么? Aspect Oriented Programming 面向切面编程,在不改变类的代码的情况下,对类方法进行功能增强. 问题2:我们需要做什么? 在我们的框架中 ...

  2. zookeeper使用

    ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,它包含一个简单的原语集,分布式应用程序可以基于它实现同步服务,配置维护和命名服务等.Zookeeper是hadoop的一个子项目,其 ...

  3. 给新手学习Java的建议

    有很多的朋友都在问我一个同样的问题:新手应该如何能学好Java.我做了一个简单的总结,分享给大家: 1-信念:无论你是选择JAVA,C,C#,C++....还是其他的语言编程,信念是第一位,只有相信自 ...

  4. js如何获取字符串第几次出现的位置

    str:查询字符串: cha:查询子字符串: num:第几次出现:第一次则为 1: function findStrIndex(str, cha, num-1) { var x = str.index ...

  5. thinkphp5中使用phpmailer实现发送邮件功能(转载)

    一.开启SMTP服务(使用php发送邮件需要用到SMTP服务,这里以163邮箱的SMTP服务为例). 1.登录163邮箱,在首页上找到“设置”. 2.选择开启的服务,一般都全选,POP3/SMTP/I ...

  6. Java 中的几个算法

    一.冒泡排序.插入排序.希尔排序.快速排序与归并排序 效率概要: 冒泡排序是蛮力法,使用两层嵌套循环,基本效率为 O(n^2) 插入排序是减治法,第一趟排序,最多比较一次,第二趟排序,最多比较两次,以 ...

  7. 个人小爱好:Operating System: three easy pieces第6章第5节——总结

    总结 我们讨论了实现CPU虚拟化的部分底层机制,及我们统称为直接执行(direct execution)的一组技术.基本的思想十分简单明了:直接在CPU上运行你想运行的代码,但是你先得确保将硬件设置好 ...

  8. 客户续费模型 逻辑回归 分类器 AdaBoost

    客户续费模型  逻辑回归 分类器  AdaBoost

  9. 浅谈Java对象的equals方法

    相等与同一: 如果两个对象具有相同的类型以及相同的属性值,则称这两个对象相等. 如果两个引用对象指的是同一个对象,则称这两个变量同一. ==是一个比较运算符,基本数据类型比较的是值,引用数据类型比较的 ...

  10. MAVEN_day02快速入门

    一.MAVEN工程目录结构 二.怎么在Eclipse中集成M2E插件(工欲善其事必先利其器)有一些准备工作 1.修改自己下载的MAVEN 2.设置本地仓库 三.构建MAVEN工程 1.选择“MAVEN ...