题目描述

题目原文

描述

Given a set of n integers: A={a1, a2,…, an}, we define a function d(A) as below:

d(A)=max(∑i=s1t1ai+∑j=s2t2aj|1&lt;=s1&lt;=t1&lt;s2&lt;=t2&lt;=n)" role="presentation" style="position: relative;">d(A)=max(∑t1i=s1ai+∑t2j=s2aj|1<=s1<=t1<s2<=t2<=n)d(A)=max(∑i=s1t1ai+∑j=s2t2aj|1<=s1<=t1<s2<=t2<=n)

Your task is to calculate d(A).

输入

The input consists of T(<=30) test cases. The number of test cases (T) is given in the first line of the input.

Each test case contains two lines. The first line is an integer n(2<=n<=50000). The second line contains n integers: a1, a2, …, an. (|ai| <= 10000).There is an empty line after each case.

输出

Print exactly one line for each test case. The line should contain the integer d(A).

样例输入

1

10

1 -1 2 2 3 -3 4 -4 5 -5

样例输出

13

提示

In the sample, we choose {2,2,3,-3,4} and {5}, then we can get the answer.

Huge input,scanf is recommended.

来源

POJ Contest,Author:Mathematica@ZSU

翻译

描述

给定一组N个整数:A ={A1,A2,…,An},我们定义一个函数D(A)如下:

d(A)=max(∑i=s1t1ai+∑j=s2t2aj|1&lt;=s1&lt;=t1&lt;s2&lt;=t2&lt;=n)" role="presentation" style="position: relative;">d(A)=max(∑t1i=s1ai+∑t2j=s2aj|1<=s1<=t1<s2<=t2<=n)d(A)=max(∑i=s1t1ai+∑j=s2t2aj|1<=s1<=t1<s2<=t2<=n)

你的任务是计算D(A)。

输入

输入包括T(T<=30)的测试数据。

测试数据的数目(T),在输入的第一行。每个测试用例包含两行。

第一行是整数n(2<= N <=50000)。第二行包含n个整数:A1,A2,...,An。(|Ai|&lt;=10000)" role="presentation" style="position: relative;">A1,A2,...,An。(|Ai|<=10000)A1,A2,...,An。(|Ai|<=10000)。每个样例例后有一个空行。

输出

每个测试用例只有一行,该行应包含整数D(A)。

提示

在示例中,我们选择{2,2,3,-3,4}和{5},那么我们就可以得到答案。

在有巨大的输入数据时,scanf是最高效的。

来源

POJ 竞赛,作者:Mathematica@ZSU

分析

这是一道比较经典的动态规划题。这道题的难点主要是在怎样将问题分解。我们先从一个点开始,假定这个点的左边有一个最大子段,右边也有一个最大子段。那答案就是每个点左右最大子段的和的最大值。那怎么左右最大字段和呢?我们可以计算左边和右边到i-1,i+1点的最大和,再求i点的最大和,递推公式为:

第一步:leftsum[i]=max(a[i],a[i]+leftsum[i−1])" role="presentation" style="position: relative;">leftsum[i]=max(a[i],a[i]+leftsum[i−1])leftsum[i]=max(a[i],a[i]+leftsum[i−1])

rightsum[i]=max(a[i],a[i]+rightsum[i+1])" role="presentation" style="position: relative;">rightsum[i]=max(a[i],a[i]+rightsum[i+1])rightsum[i]=max(a[i],a[i]+rightsum[i+1])

第二步:leftsum[i]=max(leftsum[i],leftsum[i−1])" role="presentation" style="position: relative;">leftsum[i]=max(leftsum[i],leftsum[i−1])leftsum[i]=max(leftsum[i],leftsum[i−1])

rightsum[i]=max(rightsum[i],rightsum[i+1])" role="presentation" style="position: relative;">rightsum[i]=max(rightsum[i],rightsum[i+1])rightsum[i]=max(rightsum[i],rightsum[i+1])

第三步:d(A)=max(leftsum[i]+rightsum[i+1])" role="presentation" style="position: relative;">d(A)=max(leftsum[i]+rightsum[i+1])d(A)=max(leftsum[i]+rightsum[i+1])

最后输出d(A)即可。

实现

#include<bits/stdc++.h>
using namespace std;
int n,a[50005],fa[50005],fb[50005],maxx;
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
            scanf("%d",&a[i]);
        fa[1]=a[1];
        for(int i=2;i<=n;i++)
            fa[i]=max(a[i],a[i]+fa[i-1]);
        fb[n]=a[n];
        for(int i=n-1;i>0;i--)
            fb[i]=max(a[i],a[i]+fb[i+1]);
        for(int i=2;i<=n;i++)
            fa[i]=max(fa[i],fa[i-1]);//求到位置i左边的最大序列
        for (int i=n-1;i>0;i--)
            fb[i]=max(fb[i],fb[i+1]);//求到位置i右边的最大序列
        maxx=fa[1]+fb[2];
        for(int i=1;i<n;i++)
            maxx=max(maxx,fa[i]+fb[i+1]);//找不同位置i的d(A)值,求出最大值
        printf("%d\n",maxx);
    }
}

[openjudge-动态规划]Maximum sum的更多相关文章

  1. 动态规划——Maximum Sum of 3 Non-Overlapping Subarrays

    这个题对我来说真的是相当难的题目了,严格来讲可能不算是个动态规划的题目,但这个题目对类似的划分多个非重叠连续子区间的问题提供了一个很好解决方案 这个题目需要找三个非重叠的连续子区间,通过维护两个数组将 ...

  2. 动态规划-Maximum Subarray-Maximum Sum Circular Subarray

    2020-02-18 20:57:58 一.Maximum Subarray 经典的动态规划问题. 问题描述: 问题求解: public int maxSubArray(int[] nums) { i ...

  3. ural 1146. Maximum Sum(动态规划)

    1146. Maximum Sum Time limit: 1.0 second Memory limit: 64 MB Given a 2-dimensional array of positive ...

  4. POJ 2479 Maximum sum 解题报告

    Maximum sum Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 40596   Accepted: 12663 Des ...

  5. [LeetCode] Maximum Sum of 3 Non-Overlapping Subarrays 三个非重叠子数组的最大和

    In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum. E ...

  6. POJ2479 Maximum sum[DP|最大子段和]

    Maximum sum Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 39599   Accepted: 12370 Des ...

  7. ural 1146. Maximum Sum

    1146. Maximum Sum Time limit: 0.5 secondMemory limit: 64 MB Given a 2-dimensional array of positive ...

  8. UVa 108 - Maximum Sum(最大连续子序列)

    题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...

  9. 最大子矩阵和 URAL 1146 Maximum Sum

    题目传送门 /* 最大子矩阵和:把二维降到一维,即把列压缩:然后看是否满足最大连续子序列: 好像之前做过,没印象了,看来做过的题目要经常看看:) */ #include <cstdio> ...

  10. URAL 1146 Maximum Sum(最大子矩阵的和 DP)

    Maximum Sum 大意:给你一个n*n的矩阵,求最大的子矩阵的和是多少. 思路:最開始我想的是预处理矩阵,遍历子矩阵的端点,发现复杂度是O(n^4).就不知道该怎么办了.问了一下,是压缩矩阵,转 ...

随机推荐

  1. javascript: 类、方法、原型

    // 类.方法.原型 //================================================================================== /* 类 ...

  2. 发送消息-配置app_id

    $user_id = $curr_workitem["creater_id"]; $user_name = g('dao_user') -> get_by_id($user_ ...

  3. ubuntu下搭建LAMP环境

    本文参考:http://www.linuxdiyf.com/linux/21265.html 请支持原创. 步骤一:安装apache root@mrwang:~$ sudo apt install a ...

  4. 13、cookie

    一.cookie: 1.cookie cookie的应用: 1.用户名密码 自动登录 2.购物车商品的保存. <1>缓存信息,只存储特定的重要的信息.程序编程完成.缓存信息cookie技术 ...

  5. vue利用vue ui命令创建项目

    上次用git bash,用create 命令创建vue项目,这是玩个炫酷的------vue ui (前提是有安装node.js). 在目标文件  vue ui 可以看到他在8000端口出现了一个gu ...

  6. HttpRequest获得服务端和客户端的详细信息

    参考文档:http://blog.csdn.net/u012104100/article/details/43051301 http://blog.csdn.net/u011162260/articl ...

  7. windows安装tomcat

    1.打开官网http://tomcat.apache.org/ 2.在左侧的导航栏Download下方选择最新的Tomcat 9,点击页面下方的“ 64-bit Windows zip (pgp, m ...

  8. Python学习之旅(三十五)

    Python基础知识(34):电子邮件(Ⅰ) 几乎所有的编程语言都支持发送和接收电子邮件 在使用Python收发邮件前,请先准备好至少两个电子邮件,如xxx@163.com,xxx@sina.com, ...

  9. 选择结构的三角关系Switch、Case、Default!!!

    选择结构的三角关系Switch.Case.Default!!! 今天我们学习选择结构进化章节——Switch结构,他与if有什么区别呢? 相同点: 都是用来处理多分支条件的结构 不同点: switch ...

  10. spark优化设置

    ->>>配置参数优化 SparkConf sc = new SparkConf().setAppName("com.sp.test.GroupTop3").set ...