BZOJ.4182.Shopping(点分治/dsu on tree 树形依赖背包 多重背包 单调队列)
题目的限制即:给定一棵树,只能任选一个连通块然后做背包,且每个点上的物品至少取一个。求花费为\(m\)时最大价值。
令\(f[i][j]\)表示在点\(i\),已用体积为\(j\)的最大价值。
如果物品数量为\(1\),那就是一个树形依赖背包(选儿子必须选父亲),用DFS序优化转移:\(f[i][j]=\max(f[i+1][j-v_i]+w_i,\ f[i+sz_i][j])\)(选该节点就可以从上一个点,即子树内转移,否则只能从另一棵子树转移),复杂度\(O(nm)\)。
物品数量不为\(1\),\(\max\)的前半部分再做一次单调队列优化多重背包就行了。。复杂度也是\(O(nm)\)。(注意依赖关系,当前节点至少取一个,判一下转移位置即可)
然后如果枚举每棵子树暴力转移,复杂度是\(O(n^2m)\)的。
枚举所有连通块,可以套个点分治;或者\(dsu\ on\ tree\),保留重儿子的DP数组。(不写\(dsu\)了,但貌似常数比点分治小很多!)
然后就是\(O(nm\log n)\)了。
单调队列因为常数问题,在数据随机情况下比复杂度\(O(nm\log num)\)的二进制优化多重背包慢一些。。
(而且这题\(num\)才\(100\),数据随机不随机影响也不大了...所以这题单调队列就是慢很多很多了)
点分治:
//9068kb 10588ms(好慢QAQ懒得改)
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
typedef long long LL;
const int N=505,M=4005;
int n,m,Ans,W[N],V[N],num[N],Enum,H[N],nxt[N<<1],to[N<<1],Min,root,sz[N],cnt,A[N],f[N][M];
bool vis[N];
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-48,c=gc());
return now;
}
inline void AE(int u,int v)
{
to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum;
to[++Enum]=u, nxt[Enum]=H[v], H[v]=Enum;
}
void FindRoot(int x,int fa,int tot)
{
int mx=0; sz[x]=1;
for(int i=H[x],v; i; i=nxt[i])
if(!vis[v=to[i]] && v!=fa)
FindRoot(v,x,tot), sz[x]+=sz[v], sz[v]>mx&&(mx=sz[v]);
mx=std::max(mx,tot-sz[x]);
if(mx<Min) Min=mx, root=x;
}
void MultiplePack(int *f,int *g,int val,int v,int num)
{
static int qn[M],qv[M];
const int m=::m;
for(int r=0; r<v; ++r)//余数r
for(int now=r,k=0,h=1,t=0; now<=m; now+=v,++k)
{
if(qn[h]+num<k) ++h;
if(h<=t) f[now]=std::max(f[now],qv[h]+k*val);//h<t时转移 就可以保证强制至少选一个了啊
int tmp=g[now]-k*val;//更新完f[now]再用g[now]更新队尾啊 要不有最优的会给弹掉了
while(h<=t && qv[t]<=tmp) --t;
qv[++t]=tmp, qn[t]=k;
}
}
void DP(const int cnt)
{
for(int i=cnt; i; --i)
{
int x=A[i];
for(int j=1,s=sz[x]; j<=m; ++j) f[i][j]=f[i+s][j];
MultiplePack(f[i],f[i+1],W[x],V[x],num[x]);
}
for(int i=1; i<=m; ++i) Ans=std::max(Ans,f[1][i]);
for(int i=1,s=m+1<<2; i<=cnt; ++i) memset(f[i],0,s);
}
void DFS(int x,int fa)
{
sz[x]=1, A[++cnt]=x;
for(int i=H[x],v; i; i=nxt[i])
if(!vis[v=to[i]] && v!=fa) DFS(v,x), sz[x]+=sz[v];
}
void Solve(int x)
{
vis[x]=1, cnt=0, DFS(x,0), DP(cnt);
for(int i=H[x]; i; i=nxt[i])
if(!vis[to[i]]) Min=N, FindRoot(to[i],x,sz[to[i]]), Solve(root);
}
int main()
{
for(int T=read(); T--; )
{
n=read(),m=read();
for(int i=1; i<=n; ++i) W[i]=read();
for(int i=1; i<=n; ++i) V[i]=read();
for(int i=1; i<=n; ++i) num[i]=read();
for(int i=1; i<n; ++i) AE(read(),read());
Ans=0, Min=N, FindRoot(1,1,n), Solve(root);
printf("%d\n",Ans);
Enum=0, memset(H,0,n+1<<2), memset(vis,0,n+1);//bool!
}
return 0;
}
BZOJ.4182.Shopping(点分治/dsu on tree 树形依赖背包 多重背包 单调队列)的更多相关文章
- BZOJ 4182 Shopping (点分治+树上多重背包)
题目大意:给你一颗树,你有$m$元钱,每个节点都有一种物品,价值为$w$,代价为$c$,有$d$个,如果在$u$和$v$两个城市都购买了至少一个物品,那么$u,v$路径上每个节点也都必须买至少一个物品 ...
- BZOJ.3307.雨天的尾巴(dsu on tree/线段树合并)
BZOJ 洛谷 \(dsu\ on\ tree\).(线段树合并的做法也挺显然不写了) 如果没写过\(dsu\)可以看这里. 对修改操作做一下差分放到对应点上,就成了求每个点子树内出现次数最多的颜色, ...
- [Bzoj4182]Shopping(点分治)(树上背包)(单调队列优化多重背包)
4182: Shopping Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 374 Solved: 130[Submit][Status][Disc ...
- BZOJ#1717:[Usaco2006 Dec]Milk Patterns 产奶的模式(后缀数组+单调队列)
1717: [Usaco2006 Dec]Milk Patterns 产奶的模式 Description 农夫John发现他的奶牛产奶的质量一直在变动.经过细致的调查,他发现:虽然他不能预见明天产奶的 ...
- dsu on tree:关于一类无修改询问子树可合并问题
dsu on tree:关于一类无修改询问子树可合并问题 开始学长讲课的时候听懂了但是后来忘掉了....最近又重新学了一遍 所谓\(dsu\ on\ tree\)就是处理本文标题:无修改询问子树可合并 ...
- [BZOJ4182]Shopping (点分治+树上多重背包+单调队列优化)
[BZOJ4182]Shopping (点分治+树上多重背包+单调队列优化) 题面 马上就是小苗的生日了,为了给小苗准备礼物,小葱兴冲冲地来到了商店街.商店街有n个商店,并且它们之间的道路构成了一颗树 ...
- CF 741D. Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths [dsu on tree 类似点分治]
D. Arpa's letter-marked tree and Mehrdad's Dokhtar-kosh paths CF741D 题意: 一棵有根树,边上有字母a~v,求每个子树中最长的边,满 ...
- [dsu on tree]【学习笔记】
十几天前看到zyf2000发过关于这个的题目的Blog, 今天终于去学习了一下 Codeforces原文链接 dsu on tree 简介 我也不清楚dsu是什么的英文缩写... 就像是树上的启发式合 ...
- [学习笔记]Dsu On Tree
[dsu on tree][学习笔记] - Candy? - 博客园 题单: 也称:树上启发式合并 可以解决绝大部分不带修改的离线询问的子树查询问题 流程: 1.重链剖分找重儿子 2.sol:全局用桶 ...
随机推荐
- ajax之阴影效果实现(对象函数方法)
shadow.js文件内容jQuery.fn.shadow = function () { //获取到每个已封装的元素 //this表示jQuery对象 this.each(function () { ...
- Java利用POI读取Excel
官网直接下载POI http://poi.apache.org/ package com.CommonUtil; import java.io.File; import java.io.FileIn ...
- SQLServer锁的基础问题探究
SqlServer需要在执行操作前对目标资源获取所有权,那么久发生锁定,是一个逻辑概念.为了保证事务的ACID特性设计的一种机制. 在多用户并发操作数据时,为了出现不一致的数据,锁定是必须的机制.使用 ...
- Nancy 返回值详解
简介 Nancy 是一个轻量级的,简单粗暴的framework用来构建基于HTTP的各种服务,兼容.Net和Mono.它的返回值也是多种多样的,适应各种不同的情况.包括Response.AsFile( ...
- ASP.NET Core Http请求的处理流程
- Nodejs全局安装和本地安装的区别
全局安装 全局安装方式是键入命令:npm install gulp -g 或 npm install gulp --global,其中参数-g的含义是代表安装到全局环境里面 安装位置:包安装在Node ...
- [转] 安装npm全局包提示权限不够
方法1 sudo npm i -g npm 方法2 修改usr/local的权限.使用sudo有一个风险是安装包可能会运行自己的一些脚本,使sudo操作变的不可控,不安全.可以通过将/usr/loca ...
- 在PHP中使用AES加密算法加密数据
算法/模式/填充 16字节加密后数据长度 不满16字节加密后长度 AES/CBC/NoPadding 不支持 AES/CBC/PKCS5Padding AES/CBC/ISO10126Padding ...
- C# 之 4个访问修饰符和8个声明修饰符详解
一.4个访问修饰符(是添加到类.结构或成员声明的关键字) [1] Public:公有的,是类型和类型成员的访问修饰符.对其访问没有限制. [2] Internal:内部的,是类型和类型成员的访问修饰符 ...
- C语言之冒泡排序、选择排序、折半查询、进制查表
菜单导航 1.冒泡排序 2.选择排序 3.折半查询 4.进制查表(十进制转二进制.八进制.十六进制) 一.冒泡排序 //1.冒泡排序 /** 一组无序数字,进行从小到大排序 冒泡排序的过程:就是每个循 ...