P2057 [SHOI2007]善意的投票 (最大流)
题目
解析
网络流的建模都如此巧妙。
我们把同意的意见看做源点\(s\),不同意的意见看做汇点\(t\)。
那我们\(s\)连向所有同意的人,\(t\)连向所有反对的人,流量为1,表示了与其原方案直接冲突的代价,好友之间连双向边(双向边使因为可以从同意变为不同意,也可以从不同意变为同意),流量为1,表示改变意见要付出的代价,因为这个人改变意见后,原来与其意见冲突的朋友与他意见就不冲突了,所以代价为1。
我们要让所有人意见统一,就是让源点和汇点之间没有不同的意见,也就是没有连边,所以是求最小割,根据最小割最大流定理,也就是求最大流。
题目中建完图就是这样

代码
#include <bits/stdc++.h>
using namespace std;
const int N = 1e6 + 10;
const int INF = 0x3f3f3f3f;
int n, m, s, t, num = 1;
int head[N], cur[N], dep[N];
class node {
public :
int v, nx, w;
} e[N];
template<class T>inline void read(T &x) {
x = 0; int f = 0; char ch = getchar();
while (!isdigit(ch)) f |= (ch == '-'), ch = getchar();
while (isdigit(ch)) x = x * 10 + ch - '0', ch = getchar();
x = f ? -x : x;
return ;
}
inline void add(int u, int v, int w) {
e[++num].nx = head[u], e[num].v = v, e[num].w = w, head[u] = num;
e[++num].nx = head[v], e[num].v = u, e[num].w = 0, head[v] = num;
}
queue<int>q;
bool bfs() {
memset(dep, 0, sizeof dep);
memcpy(cur, head, sizeof cur);
dep[s] = 1;
q.push(s);
while (!q.empty()) {
int u = q.front();
q.pop();
for (int i = head[u]; ~i; i = e[i].nx) {
int v = e[i].v;
if (e[i].w && !dep[v]) dep[v] = dep[u] + 1, q.push(v);
}
}
return dep[t];
}
int dfs(int u, int flow) {
if (u == t) return flow;
int use = 0;
for (int &i = cur[u]; ~i; i = e[i].nx) {
int v = e[i].v;
if (e[i].w && dep[v] == dep[u] + 1) {
int di = dfs(v, min(flow, e[i].w));
e[i].w -= di, e[i ^ 1].w += di;
use += di, flow -= di;
if (flow <= 0) break;
}
}
return use;
}
int dinic() {
int ans = 0;
while (bfs()) ans += dfs(s, INF);
return ans;
}
int main() {
memset(head, -1, sizeof head);
read(n), read(m);
s = n + 1, t = s + 1;
for (int i = 1, x; i <= n; ++i) {
read(x);
if (x) add(s, i, 1);
else add(i, t, 1);
}
for (int i = 1, x, y; i <= m; ++i) {
read(x), read(y);
add(x, y, 1);
add(y, x, 1);
}
printf("%d\n", dinic());
}
P2057 [SHOI2007]善意的投票 (最大流)的更多相关文章
- 洛谷 P2057 [SHOI2007]善意的投票 解题报告
P2057 [SHOI2007]善意的投票 题目描述 幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉.对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神.虽然每个人都有自己的主见,但是为了照 ...
- P2057 [SHOI2007]善意的投票 / [JLOI2010]冠军调查
P2057 [SHOI2007]善意的投票 / [JLOI2010]冠军调查 拿来练网络流的qwq 思路:如果i不同意,连边(i,t,1),否则连边(s,i,1).好朋友x,y间连边(x,y,1)(y ...
- P2057 [SHOI2007]善意的投票 最小割
$ \color{#0066ff}{ 题目描述 }$ 幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉.对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神.虽然每个人都有自己的主见,但是为了照 ...
- 【题解】Luogu P2057 [SHOI2007]善意的投票
原题传送门 我们一眼就能看出这是一道最小割的题 我们设不睡觉这种状态为S,睡觉这种状态为T 对于每个人,如果不想睡觉,就从S向这个人连流量为1的边,否则,就从这个人向T连流量为1的边 对于每一对朋友, ...
- [洛谷P2057][SHOI2007]善意的投票
题目大意:有$n(n\leqslant300)$个人,每个人可以选择$0$或$1$,每个人最开始有意愿,有$m(m\leqslant\dfrac{n(n-1)}2)$对好朋友.定义一次的冲突数为好朋友 ...
- 洛谷P2057 [SHOI2007]善意的投票 题解
题目链接: https://www.luogu.org/problemnew/show/P2057 分析: 由0和1的选择我们直觉的想到0与S一堆,1与T一堆. 但是发现,刚开始的主意并不一定是最终的 ...
- Luogu P2057 [SHOI2007]善意的投票
题目链接 \(Click\) \(Here\) 考虑模型转换.变成文理分科二选一带收益模型,就一波带走了. 如果没有见过这个模型的话,这里讲的很详细. #include <bits/stdc++ ...
- P2057 [SHOI2007]善意的投票
思路 简单的最小割模型 最小割的模型就是选出一些边,把点集划分成S和T两个部分,使得代价最小 到这题上就是板子了 代码 #include <cstdio> #include <alg ...
- 洛谷$P2057\ [SHOI2007]$ 善意的投票 网络流
正解:网络流 解题报告: 传送门! $umm$看到每个人要么0要么1就考虑最小割呗,,,? 然后贡献有两种?一种是违背自己的意愿,一种是和朋友的意愿违背了 所以考虑开一排点分别表示每个人,然后$S$表 ...
随机推荐
- 字节流之文件输出流FileOutputStream
文件拷贝:
- java Web jsp和servlet的关系
JSP在本质上就是SERVLET,但是两者的创建方式不一样Servlet完全是JAVA程序代码构成,擅长于流程控制和事务处理,通过Servlet来生成动态网页很不直观JSP由HTML代码和JSP标签构 ...
- 自制模仿apache访问日志文件格式的php日志类
<?php // 访问日志写入类 @author 王伟 2011.12.14class Log{ //项目跟路径 private $root_path; //日 ...
- Luogu 4781 【模板】拉格朗日插值
模板题. 拉格朗日插值的精髓在于这个公式 $$f(x) = \sum_{i = 1}^{n}y_i\prod _{j \neq i}\frac{x - x_i}{x_j - x_i}$$ 其中$(x_ ...
- C高级第一次作业
未来两周学习内容 复习指针的定义和引用 指针的应用场景: 指针作为函数参数(角色互换) 指针作为函数的参数返回多个值 指针.数组和地址间的关系 使用指针进行数组操作 数组名(指针)作为函数参数(冒泡排 ...
- php变量数据类型
整型:可以用十进制.八进制.十六进制指定.十进制就是日常使用的数字:八进制,数字前必须加上“0”(这个0是阿拉伯数字0,可不是英文字母“欧”哦):十六进制,数字前必须加“0x” (这个0也是阿拉伯数字 ...
- UML类之间的关系
原文:http://www.cnblogs.com/me115/p/4092632.html 下面详细介绍这六种关系: 类之间的关系 泛化关系(generalization) 类的继承结构表现在UML ...
- 图的遍历——BFS
原创 裸一篇图的BFS遍历,直接来图: 简单介绍一下BFS遍历的过程: 以上图为例子,从0开始遍历,访问0,按大小顺序访问与0相邻的所有顶点,即先访问1,再访问2: 至此顶点0已经没有作用了,因为其本 ...
- MongoDB整理笔记のGUI操作
值得幸运的是,其实MongoDB也有像类似于PL/SQL一样的界面操作工具操作MongoDB. 下面就来介绍几款不同的界面工具,大家各取所需! MongoVUE 主页:http://www.mongo ...
- JVM锁实现探究2:synchronized深探
本文来自网易云社区 作者:马进 这里我们来聊聊synchronized,以及wait(),notify()的实现原理. 在深入介绍synchronized原理之前,先介绍两种不同的锁实现. 一.阻塞锁 ...