题目

P2057 [SHOI2007]善意的投票

解析

网络流的建模都如此巧妙。

我们把同意的意见看做源点\(s\),不同意的意见看做汇点\(t\)。

那我们\(s\)连向所有同意的人,\(t\)连向所有反对的人,流量为1,表示了与其原方案直接冲突的代价,好友之间连双向边(双向边使因为可以从同意变为不同意,也可以从不同意变为同意),流量为1,表示改变意见要付出的代价,因为这个人改变意见后,原来与其意见冲突的朋友与他意见就不冲突了,所以代价为1。

我们要让所有人意见统一,就是让源点和汇点之间没有不同的意见,也就是没有连边,所以是求最小割,根据最小割最大流定理,也就是求最大流。

题目中建完图就是这样

代码

#include <bits/stdc++.h>
using namespace std;
const int N = 1e6 + 10;
const int INF = 0x3f3f3f3f;
int n, m, s, t, num = 1;
int head[N], cur[N], dep[N];
class node {
public :
int v, nx, w;
} e[N]; template<class T>inline void read(T &x) {
x = 0; int f = 0; char ch = getchar();
while (!isdigit(ch)) f |= (ch == '-'), ch = getchar();
while (isdigit(ch)) x = x * 10 + ch - '0', ch = getchar();
x = f ? -x : x;
return ;
} inline void add(int u, int v, int w) {
e[++num].nx = head[u], e[num].v = v, e[num].w = w, head[u] = num;
e[++num].nx = head[v], e[num].v = u, e[num].w = 0, head[v] = num;
} queue<int>q;
bool bfs() {
memset(dep, 0, sizeof dep);
memcpy(cur, head, sizeof cur);
dep[s] = 1;
q.push(s);
while (!q.empty()) {
int u = q.front();
q.pop();
for (int i = head[u]; ~i; i = e[i].nx) {
int v = e[i].v;
if (e[i].w && !dep[v]) dep[v] = dep[u] + 1, q.push(v);
}
}
return dep[t];
} int dfs(int u, int flow) {
if (u == t) return flow;
int use = 0;
for (int &i = cur[u]; ~i; i = e[i].nx) {
int v = e[i].v;
if (e[i].w && dep[v] == dep[u] + 1) {
int di = dfs(v, min(flow, e[i].w));
e[i].w -= di, e[i ^ 1].w += di;
use += di, flow -= di;
if (flow <= 0) break;
}
}
return use;
} int dinic() {
int ans = 0;
while (bfs()) ans += dfs(s, INF);
return ans;
} int main() {
memset(head, -1, sizeof head);
read(n), read(m);
s = n + 1, t = s + 1;
for (int i = 1, x; i <= n; ++i) {
read(x);
if (x) add(s, i, 1);
else add(i, t, 1);
}
for (int i = 1, x, y; i <= m; ++i) {
read(x), read(y);
add(x, y, 1);
add(y, x, 1);
}
printf("%d\n", dinic());
}

P2057 [SHOI2007]善意的投票 (最大流)的更多相关文章

  1. 洛谷 P2057 [SHOI2007]善意的投票 解题报告

    P2057 [SHOI2007]善意的投票 题目描述 幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉.对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神.虽然每个人都有自己的主见,但是为了照 ...

  2. P2057 [SHOI2007]善意的投票 / [JLOI2010]冠军调查

    P2057 [SHOI2007]善意的投票 / [JLOI2010]冠军调查 拿来练网络流的qwq 思路:如果i不同意,连边(i,t,1),否则连边(s,i,1).好朋友x,y间连边(x,y,1)(y ...

  3. P2057 [SHOI2007]善意的投票 最小割

    $ \color{#0066ff}{ 题目描述 }$ 幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉.对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神.虽然每个人都有自己的主见,但是为了照 ...

  4. 【题解】Luogu P2057 [SHOI2007]善意的投票

    原题传送门 我们一眼就能看出这是一道最小割的题 我们设不睡觉这种状态为S,睡觉这种状态为T 对于每个人,如果不想睡觉,就从S向这个人连流量为1的边,否则,就从这个人向T连流量为1的边 对于每一对朋友, ...

  5. [洛谷P2057][SHOI2007]善意的投票

    题目大意:有$n(n\leqslant300)$个人,每个人可以选择$0$或$1$,每个人最开始有意愿,有$m(m\leqslant\dfrac{n(n-1)}2)$对好朋友.定义一次的冲突数为好朋友 ...

  6. 洛谷P2057 [SHOI2007]善意的投票 题解

    题目链接: https://www.luogu.org/problemnew/show/P2057 分析: 由0和1的选择我们直觉的想到0与S一堆,1与T一堆. 但是发现,刚开始的主意并不一定是最终的 ...

  7. Luogu P2057 [SHOI2007]善意的投票

    题目链接 \(Click\) \(Here\) 考虑模型转换.变成文理分科二选一带收益模型,就一波带走了. 如果没有见过这个模型的话,这里讲的很详细. #include <bits/stdc++ ...

  8. P2057 [SHOI2007]善意的投票

    思路 简单的最小割模型 最小割的模型就是选出一些边,把点集划分成S和T两个部分,使得代价最小 到这题上就是板子了 代码 #include <cstdio> #include <alg ...

  9. 洛谷$P2057\ [SHOI2007]$ 善意的投票 网络流

    正解:网络流 解题报告: 传送门! $umm$看到每个人要么0要么1就考虑最小割呗,,,? 然后贡献有两种?一种是违背自己的意愿,一种是和朋友的意愿违背了 所以考虑开一排点分别表示每个人,然后$S$表 ...

随机推荐

  1. fgets、gets和scanf的区别

    gets()从stdin流中读取字符串,直至接受到换行符或EOF时停止,并将读取的结果存放在buffer指针所指向的字符数组中.换行符不作为读取串的内容,读取的换行符被转换为null值,并由此来结束字 ...

  2. saltstack系列(六)——zmq扩展(二)

    问题 我们已经熟练的掌握了REQ/REP模式,它是一个一对多的模式,一个REP对应多个REQ. 但是现实工作中,我们会遇到这样的难题,一个REP无法满足REQ的提问,因为REQ太多了,虽然可以增加一个 ...

  3. 【bzoj1018】[SHOI2008]堵塞的交通traffic

    1018: [SHOI2008]堵塞的交通traffic Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 2887  Solved: 954[Submit ...

  4. ubuntu下源码方式安装php5.4

    一.安装前准备 下载php-5.4.13.tar.gz最新版本放到/user/src目录下 二.安装 因为在安装php过程中,会依赖安装很多库,为了不让你反复安装,建议按步骤操作 安装autoconf ...

  5. 高性能的城市定位API接口

    如果不需要精准的定位,还有一种通过IP地址获取当前城市的方法,采用新浪的api接口. <script src="http://int.dpool.sina.com.cn/iplooku ...

  6. 一段上传图片预览JS脚本,Input file图片预览的实现

    在深圳做项目的时候,需要一个用户上传头像预览的功能!是在网上找了好多,都不太满意.要么是flash的,要么是Ajax上传后返回图片路径的,要么压根就是不能用的.幸运的是在这个项目以前有人写过一个图片预 ...

  7. Docker02 基本命令、开发环境搭建、docker安装nginx、Dockerfile、路径挂载

    1 基本命令 1.1 docker相关 centos6.5 安装docker环境 >sudo yum install -y http://mirrors.yun-idc.com/epel/6/i ...

  8. Win10系统优化/设置脚本

    Win10系统优化/设置脚本 用了很长时间win10了,用的过程中,发现了一些问题,关于系统基本的优化,和个人的使用习惯设置等等,做成了一个脚本,可以一键设置win10的系统设置,结合DWS对Win1 ...

  9. SqlServer-truncate && delete && drop 的区别

    有些人在删除表的所有记录的时候,喜欢这样来——不给DELETE 语句提供WHERE 子句,表中的所有记录都将被删除.但这种方法是不可取的,正确的应该使用 TRUNCATE TABLE tb_name ...

  10. c语言学习笔记 for循环的结构

    其实感觉for循环没有while循环那么直白好理解. for(i=0;i<n;i++) { dosth(); } i=0是i的初始值. i<n是循环进行的条件. i++是每次循环要做的事情 ...