想好久啊+不敢写啊……但果然人还是应当勇敢自信,只有坚定地去尝试,才会知道最后的结果。1A真的太开心啦,不过好像我的做法还是比较复杂的样子……理解起来应该算是比较容易好懂的类型,大家可以参考一下思路~

  首先我们先考虑一下简单的30分算法:30以内的质数只有十个左右,可以利用状压表示出两个人所选择的集合,再通过寿司转移即可。之后的大数据呢?我们发现不能这样做是因为之后的质数越来越多,状压的空间就开不下了。

  这时要注意到一个性质:对于1~n内的每一个数而言,都可以分解成若干个<sqrt(n)的质数之积 || 在此基础之上再乘上一个 > sqrt(n)的质数。这说明什么?对于所有的>sqrt(n)的质数而言,我们选择一个寿司只可能选择其中的一个——换句话说,就是不同的大质数之间的决策是相互独立的。

  于是就有了如下算法:既然不同的大质数之间不会互相影响,我们就一个一个大质数来统计,之后再累加到一起即可。于是我们增加一维的状态,单独表示这一个大质数。0表示两个集合中均不含有这个大质数因子,1表示第一个人所选择的集合中含这个因子,2表示第二个人选择的集合中含有这个因子。不同的因子之间的转移将所有1&2的状态都加入0并清空1&2即可(对于新的质数来说,之前没有作出过相应的决策,所以是不含有该因子的)。

  网上代码很短,然而我莫名长……

#include <bits/stdc++.h>
using namespace std;
#define maxn 1000
#define maxt 260
#define int long long
int n, mod, S[maxn], CNST = ( << ) - ;
int cnt, dp[][maxt][maxt], num[maxn], mark[maxn];
int tot, P[maxn], cnp = , ans;
int pri[maxn] = {, , , , , , , , };
map <int, int> Map; int read()
{
int x = ;
char c;
c = getchar();
while(c < '' || c > '') c = getchar();
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x;
} int up(int &x, int y)
{
x += y;
if(x >= mod) x -= mod;
} void work(int i)
{
for(int x = CNST; ~x; x --)
for(int y = CNST; ~y; y --)
{
if(x & y) continue;
int a = dp[][x][y], b = dp[][x][y];
up(dp[][x | num[i]][y], dp[][x][y]);
up(dp[][x][y | num[i]], dp[][x][y]); up(dp[][x | num[i]][y], a);
up(dp[][x][y | num[i]], b);
}
} void DP(int k)
{
for(int x = ; x <= CNST; x ++)
for(int y = ; y <= CNST; y ++)
if(x & y) continue;
else
{
up(dp[][x][y], dp[][x][y]);
up(dp[][x][y], dp[][x][y]);
dp[][x][y] = dp[][x][y] = ;
}
if(k) for(int i = k; i <= n + ; i += k) work(i);
else
{
for(int i = ; i <= cnt; i ++)
for(int x = CNST; ~x; x --)
for(int y = CNST; ~y; y --)
{
if(x & y) continue;
int k = S[i];
int a = dp[][x][y];
up(dp[][x | num[k]][y], a);
up(dp[][x][y | num[k]], a);
}
}
} signed main()
{
n = read() - , mod = read();
dp[][][] = ;
for(int i = ; i <= n + ; i ++)
{
int k = i;
for(int j = ; j <= cnp; j ++)
{
if(!(k % pri[j])) num[i] |= ( << (j - ));
while(!(k % pri[j])) k /= pri[j];
}
if(k != && k != )
{
mark[i - ] = k;
if(!Map[k]) Map[k] = , P[++ tot] = k;
}
else S[++ cnt] = i;
}
for(int i = ; i <= tot; i ++)
DP(P[i]);
for(int i = ; i <= CNST; i ++)
for(int j = ; j <= CNST; j ++)
if(i & j) continue;
else
{
up(ans, dp[][i][j]);
up(ans, dp[][i][j]);
up(ans, dp[][i][j]);
}
printf("%lld\n", ans);
return ;
}

【题解】NOI2015寿司晚宴的更多相关文章

  1. 【BZOJ4197】[Noi2015]寿司晚宴 状压DP+分解质因数

    [BZOJ4197][Noi2015]寿司晚宴 Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴 ...

  2. [UOJ#129][BZOJ4197][Noi2015]寿司晚宴

    [UOJ#129][BZOJ4197][Noi2015]寿司晚宴 试题描述 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司 ...

  3. BZOJ 4197: [Noi2015]寿司晚宴 状态压缩 + 01背包

    4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec  Memory Limit: 512 MB Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿 ...

  4. [BZOJ4197][Noi2015]寿司晚宴

    4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 412  Solved: 279[Submit][Status] ...

  5. BZOJ 4197: [Noi2015]寿司晚宴( dp )

    N^0.5以内的质数只有8个, dp(i, j, k)表示用了前i个大质数(>N^0.5), 2人选的质数(<=N^0.5)集合分别为j, k时的方案数. 转移时考虑当前的大质数p是给哪个 ...

  6. BZOJ_4197_[Noi2015]寿司晚宴_状态压缩动态规划

    BZOJ_4197_[Noi2015]寿司晚宴_状态压缩动态规划 Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被 ...

  7. [NOI2015]寿司晚宴 --- 状压DP

    [NOI2015]寿司晚宴 题目描述 为了庆祝NOI的成功开幕,主办方为大家准备了一场寿司晚宴. 小G和小W作为参加NOI的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了n−1种不同的寿 ...

  8. BZO4197 & 洛谷2150 & UOJ129:[NOI2015]寿司晚宴——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4197 https://www.luogu.org/problemnew/show/P2150 ht ...

  9. bzoj 4199 [NOI2015]寿司晚宴

    Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了 n−1 种不同 ...

  10. 【bzoj4197】[Noi2015]寿司晚宴 分解质因数+状态压缩dp

    题目描述 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了 n−1 种不同的寿司,编号 ...

随机推荐

  1. jquery把数组中年月相同的数组重新组成新的数组

    //原数组var data = { results: [{ id:0, date:'2017-12-12', content:'123' },{ id:0, date:'2017-12-12', co ...

  2. git merge最简洁

    一.开发分支(dev)上的代码达到上线的标准后,要合并到 master 分支 git checkout devgit pullgit checkout mastergit merge devgit p ...

  3. python递归函数(计算阶乘)

    def f1(x,x1=1): if x == 1: return x1 #x1这个值为我们所需要的值,所以返回 x1 *= x r = f1(x-1,x1) #r接收返回值,并在下面接着返回 ret ...

  4. 笨方法学python之import sys与from sys import argv的区别

    这是在网上看到的一个大神的解答: sys is a module that contains “system functionality”. sys.argv is a list containing ...

  5. Git更改远程仓库地址

    最近在开发一个公司内部的公共组件库.老大整理了git仓库里的一些项目,其中就包括这个项目. 项目git地址变了,于是我本地的代码提交成功后push失败. 查看远程地址 git remote -v 更改 ...

  6. Android开发——View绘制过程源码解析(二)

    0. 前言   View的绘制流程从ViewRoot的performTraversals开始,经过measure,layout,draw三个流程,之后就可以在屏幕上看到View了.上一篇已经介绍了Vi ...

  7. 用intellij Idea加载eclipse的maven项目全流程

    eclipse的maven项目目录 全流程 加载项目 打开intellij Idea file -> new -> module from existing Sources  选择.pom ...

  8. stm8编程tips(stvd)

    编译完成时显示程序占用的flash和ram大小 将附件压缩包中的mapinfo.exe解压到stvd的安装路径\stvd中 在工程上点右键选settings 右侧的选项卡选择Linker,将categ ...

  9. android get cpu rate

    public static int getProcessCpuRate() { try { RandomAccessFile reader = new RandomAccessFile("/ ...

  10. Jmeter学习(三)

    Apache JMeter是Apache组织开发的基于Java的压力测试工具.用于对软件做压力测试,它最初被设计用于Web应用测试,但后来扩展到其他测试.(来自百度) jmeter的特点: 开源免费. ...