想好久啊+不敢写啊……但果然人还是应当勇敢自信,只有坚定地去尝试,才会知道最后的结果。1A真的太开心啦,不过好像我的做法还是比较复杂的样子……理解起来应该算是比较容易好懂的类型,大家可以参考一下思路~

  首先我们先考虑一下简单的30分算法:30以内的质数只有十个左右,可以利用状压表示出两个人所选择的集合,再通过寿司转移即可。之后的大数据呢?我们发现不能这样做是因为之后的质数越来越多,状压的空间就开不下了。

  这时要注意到一个性质:对于1~n内的每一个数而言,都可以分解成若干个<sqrt(n)的质数之积 || 在此基础之上再乘上一个 > sqrt(n)的质数。这说明什么?对于所有的>sqrt(n)的质数而言,我们选择一个寿司只可能选择其中的一个——换句话说,就是不同的大质数之间的决策是相互独立的。

  于是就有了如下算法:既然不同的大质数之间不会互相影响,我们就一个一个大质数来统计,之后再累加到一起即可。于是我们增加一维的状态,单独表示这一个大质数。0表示两个集合中均不含有这个大质数因子,1表示第一个人所选择的集合中含这个因子,2表示第二个人选择的集合中含有这个因子。不同的因子之间的转移将所有1&2的状态都加入0并清空1&2即可(对于新的质数来说,之前没有作出过相应的决策,所以是不含有该因子的)。

  网上代码很短,然而我莫名长……

#include <bits/stdc++.h>
using namespace std;
#define maxn 1000
#define maxt 260
#define int long long
int n, mod, S[maxn], CNST = ( << ) - ;
int cnt, dp[][maxt][maxt], num[maxn], mark[maxn];
int tot, P[maxn], cnp = , ans;
int pri[maxn] = {, , , , , , , , };
map <int, int> Map; int read()
{
int x = ;
char c;
c = getchar();
while(c < '' || c > '') c = getchar();
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x;
} int up(int &x, int y)
{
x += y;
if(x >= mod) x -= mod;
} void work(int i)
{
for(int x = CNST; ~x; x --)
for(int y = CNST; ~y; y --)
{
if(x & y) continue;
int a = dp[][x][y], b = dp[][x][y];
up(dp[][x | num[i]][y], dp[][x][y]);
up(dp[][x][y | num[i]], dp[][x][y]); up(dp[][x | num[i]][y], a);
up(dp[][x][y | num[i]], b);
}
} void DP(int k)
{
for(int x = ; x <= CNST; x ++)
for(int y = ; y <= CNST; y ++)
if(x & y) continue;
else
{
up(dp[][x][y], dp[][x][y]);
up(dp[][x][y], dp[][x][y]);
dp[][x][y] = dp[][x][y] = ;
}
if(k) for(int i = k; i <= n + ; i += k) work(i);
else
{
for(int i = ; i <= cnt; i ++)
for(int x = CNST; ~x; x --)
for(int y = CNST; ~y; y --)
{
if(x & y) continue;
int k = S[i];
int a = dp[][x][y];
up(dp[][x | num[k]][y], a);
up(dp[][x][y | num[k]], a);
}
}
} signed main()
{
n = read() - , mod = read();
dp[][][] = ;
for(int i = ; i <= n + ; i ++)
{
int k = i;
for(int j = ; j <= cnp; j ++)
{
if(!(k % pri[j])) num[i] |= ( << (j - ));
while(!(k % pri[j])) k /= pri[j];
}
if(k != && k != )
{
mark[i - ] = k;
if(!Map[k]) Map[k] = , P[++ tot] = k;
}
else S[++ cnt] = i;
}
for(int i = ; i <= tot; i ++)
DP(P[i]);
for(int i = ; i <= CNST; i ++)
for(int j = ; j <= CNST; j ++)
if(i & j) continue;
else
{
up(ans, dp[][i][j]);
up(ans, dp[][i][j]);
up(ans, dp[][i][j]);
}
printf("%lld\n", ans);
return ;
}

【题解】NOI2015寿司晚宴的更多相关文章

  1. 【BZOJ4197】[Noi2015]寿司晚宴 状压DP+分解质因数

    [BZOJ4197][Noi2015]寿司晚宴 Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴 ...

  2. [UOJ#129][BZOJ4197][Noi2015]寿司晚宴

    [UOJ#129][BZOJ4197][Noi2015]寿司晚宴 试题描述 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司 ...

  3. BZOJ 4197: [Noi2015]寿司晚宴 状态压缩 + 01背包

    4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec  Memory Limit: 512 MB Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿 ...

  4. [BZOJ4197][Noi2015]寿司晚宴

    4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 412  Solved: 279[Submit][Status] ...

  5. BZOJ 4197: [Noi2015]寿司晚宴( dp )

    N^0.5以内的质数只有8个, dp(i, j, k)表示用了前i个大质数(>N^0.5), 2人选的质数(<=N^0.5)集合分别为j, k时的方案数. 转移时考虑当前的大质数p是给哪个 ...

  6. BZOJ_4197_[Noi2015]寿司晚宴_状态压缩动态规划

    BZOJ_4197_[Noi2015]寿司晚宴_状态压缩动态规划 Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被 ...

  7. [NOI2015]寿司晚宴 --- 状压DP

    [NOI2015]寿司晚宴 题目描述 为了庆祝NOI的成功开幕,主办方为大家准备了一场寿司晚宴. 小G和小W作为参加NOI的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了n−1种不同的寿 ...

  8. BZO4197 & 洛谷2150 & UOJ129:[NOI2015]寿司晚宴——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4197 https://www.luogu.org/problemnew/show/P2150 ht ...

  9. bzoj 4199 [NOI2015]寿司晚宴

    Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了 n−1 种不同 ...

  10. 【bzoj4197】[Noi2015]寿司晚宴 分解质因数+状态压缩dp

    题目描述 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了 n−1 种不同的寿司,编号 ...

随机推荐

  1. Spring IoC的底层技术支持——Java反射机制

    我们知道,通过 new XmlClassPathApplicationContext("beans.xml")等方式即可启动容器.在容器启动时,Spring 根据配置文件的描述信息 ...

  2. 【PHP】统计问卷调查结果的选项票数和百分比

    遇到问题: 有以下数组,每一条记录是用户的每一条问卷题目的回答情况,q_id是问题id,o_id是选项id.需要统计每一个选项被选择的次数和每个选项占该问题的百分比.如问题1的选项有A和B,一个用户选 ...

  3. python构造二维列表以及排序字典

    1. 构造二维列表: 比如我现在需要一个100*100的二维列表: a = [] for i in range(100): a.append([]) for j in range(100): a[i] ...

  4. mysql5.7数据库与5.7之前版本比较

    数据库初始化方式变更 <5.7 版本 mysql_install_db >5.7 版本 bin/mysqld --initialize --user =mysql --basedir=/u ...

  5. 什么是高防服务器?如何搭建DDOS流量攻击防护系统

    关于高防服务器的使用以及需求,从以往的联众棋牌到目前发展迅猛的手机APP棋牌,越来越多的游戏行业都在使用高防服务器系统,从2018年1月到11月,国内棋牌运营公司发展到了几百家. 棋牌的玩法模式从之前 ...

  6. 017---Django的中间件解决跨域

    跨域 跨域是什么? 浏览器从一个域名的网页去请求另一个域名的资源的时候,如果不同源.请求的响应结果就会被浏览器的同源策略所拦截 同源策略是什么? 同源:协议 + 域名 + 端口 特点:阻止ajax请求 ...

  7. (数据科学学习手札36)tensorflow实现MLP

    一.简介 我们在前面的数据科学学习手札34中也介绍过,作为最典型的神经网络,多层感知机(MLP)结构简单且规则,并且在隐层设计的足够完善时,可以拟合任意连续函数,而除了利用前面介绍的sklearn.n ...

  8. 在WPF中自定义控件(1)

    原文:在WPF中自定义控件(1)    在WPF中自定义控件(1):概述                                                   周银辉一, 不一定需要自定 ...

  9. uber司机已经激活了,就是还没有上传头

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  10. Gradle 设置本地meaven

    repositories { maven { url uri("F:\\meaven")} }