神TM有是结论题,我讨厌结论题mmp。

杨氏矩阵了解一下(建议去维基百科)。

反正就是推柿子,使劲推,最后写起来有一点小麻烦,但是在草稿纸(然鹅我木有啊)上思路清晰的话还是没问题的。

#include<cstdio>
#include<cctype>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn=2000000,ha=1e9+7; inline int read(){
int x=0; char ch=getchar();
for(;!isdigit(ch);ch=getchar());
for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';
return x;
} inline int add(int x,int y){ x+=y; return x>=ha?x-ha:x;}
inline void ADD(int &x,int y){ x+=y; if(x>=ha) x-=ha;} inline int ksm(int x,int y){
int an=1;
for(;y;y>>=1,x=x*(ll)x%ha) if(y&1) an=an*(ll)x%ha;
return an;
} int jc[maxn+5],qz[maxn+5],hz[maxn+5];
int A,B,C,D,T,ans,MX,MY; inline void init(){
jc[0]=qz[0]=hz[0]=1;
for(int i=1;i<=maxn;i++){
jc[i]=jc[i-1]*(ll)i%ha;
qz[i]=qz[i-1]*(ll)ksm(i,i)%ha;
} for(int i=1;i<=maxn;i++) hz[i]=hz[i-1]*(ll)jc[i]%ha;
} inline int gethz(int x,int len){
if(!len) return 1;
return hz[x+len-1]*(ll)ksm(hz[x-1]*(ll)ksm(jc[x-1],len)%ha,ha-2)%ha;
} inline int Get(int x,int y,int derta){
if(x>y) swap(x,y); if(!x) return 1; int now=qz[x+derta]*(ll)ksm(qz[derta]*(ll)ksm(jc[x+derta]*(ll)ksm(jc[derta],ha-2)%ha,derta)%ha,ha-2)%ha;
now=now*(ll)ksm(jc[y+derta]*(ll)ksm(jc[x+derta],ha-2)%ha,x)%ha*(ll)gethz(y+derta+1,x-1)%ha;
return now;
} int main(){
init(); T=read();
while(T--){
A=read(),B=read(),C=read(),D=read();
A-=B-1,C-=D-1,MX=min(A,C),MY=min(B,D); if((A>C&&B<D)||(A<C&&B>D))
ans=Get(A+C-MX*2,MY,0)*(ll)Get(MX,B+D-MY*2,0)%ha*(ll)Get(MX,MY,A+C+B+D-MX*2-MY*2)%ha;
else ans=Get(A+C-MX,B+D-MY,0); ans=jc[A*(ll)B+C*(ll)D-MX*(ll)MY]*(ll)ksm(ans,ha-2)%ha; printf("%d\n",ans);
} return 0;
}

  

SD 一轮集训 day1 lose的更多相关文章

  1. SD 一轮集训 day1 carcar

    可以发现每条边只能选一次或者两次,并且最后每个点的度数(∑邻接边选的次数和)都是偶数(代表有欧拉回路). 然后根据题意列一个 n 行 m+1 列的01矩阵,每一行代表一个异或方程组(每个点的度数是偶数 ...

  2. 【欧拉回路+最小生成树】SD开车@山东2018省队一轮集训day1

    目录 [欧拉回路+最小生成树]SD开车@山东2018省队一轮集训day1 PROBLEM 题目描述 输入 输出 样例输入 样例输出 提示 SOLUTION CODE [欧拉回路+最小生成树]SD开车@ ...

  3. LOJ 6060「2017 山东一轮集训 Day1 / SDWC2018 Day1」Set(线性基,贪心)

    LOJ 6060「2017 山东一轮集训 Day1 / SDWC2018 Day1」Set $ solution: $ 这一题的重点在于优先级问题,我们应该先保证总和最大,然后再保证某一个最小.于是我 ...

  4. LOJ #6060. 「2017 山东一轮集训 Day1 / SDWC2018 Day1」Set

    有趣的思博套路题,想到了基本上加上个对线性基的理解就可以过了 首先考虑到这个把数分成两半的分别异或的过程不会改变某一位上\(1\)的总个数 因此我们求出所有数的\(\operatorname{xor} ...

  5. LOJ.6060.[2017山东一轮集训Day1/SDWC2018Day1]Set(线性基)

    LOJ BZOJ 明明做过一道(最初思路)比较类似的题啊,怎么还是一点思路没有. 记所有元素的异或和为\(s\),那么\(x_1+x_2=x_1+x_1\ ^{\wedge}s\). \(s\)是确定 ...

  6. 【LOJ6060】【2017 山东一轮集训 Day1 / SDWC2018 Day1】Set 线性基

    题目大意 给出 \(n\) 个非负整数,将数划分成两个集合,记为一号集合和二号集合.\(x_1\) 为一号集合中所有数的异或和,\(x_2\) 为二号集合中所有数的异或和.在最大化 \(x_1 + x ...

  7. loj6102 「2017 山东二轮集训 Day1」第三题

    传送门:https://loj.ac/problem/6102 [题解] 贴一份zyz在知乎的回答吧 https://www.zhihu.com/question/61218881 其实是经典问题 # ...

  8. SD 一轮集训 day4 圣城鼠

    非常强的构造题. 很显然的是我们要构造一个类似菊花图的东西,因为这样的话两点之间路径的点数会非常少,很容易满足第二个条件. 但是因为直接菊花图的话会不满足第一个条件,,,所以我们可以构造一个类菊花图. ...

  9. SD 一轮集训 day4 弦形袋鼠

    可以发现把每一个 a[i] * b[i] 加到矩阵里去,就相当于 把一个 1*m 的向量伸缩后变成 n个再加到矩阵里去,所以答案就是远=原矩阵中线性线性无关组的个数. (而且好像一个矩阵横着消元和竖着 ...

随机推荐

  1. 【NOIP模拟赛】超级树 DP

    这个题我在考试的时候把所有的转移都想全了就是新加一个点时有I.不作为II.自己呆着III.连一个IV.连接两个子树中的两个V连接一个子树中的两个,然而V我并不会转移........ 这个题的正解体现了 ...

  2. 【BZOJ 4832】 [Lydsy2017年4月月赛] 抵制克苏恩 期望概率dp

    打记录的题打多了,忘了用开维记录信息了......我们用f[i][j][l][k]表示已经完成了i次攻击,随从3血剩j个,2血剩l个,1血剩k个,这样我们求出每个状态的概率,从而求出他们对答案的贡献并 ...

  3. 理解[].forEach.call()

    例子: let cols = document.querySelectorAll('ul li') [].forEach.call(cols, function (col, index) { // T ...

  4. 使用XTU降低CPU功耗,自动执行不失效

    INTEL出品的XTU可以用来做软超频操作,给CPU/GPU加电压超频,也可以通过降低CPU/GPU电压来减少功耗. 以前用XTU设置好了之后,过一段时间就自动失效了,最近失效的频率突然很高,于是找了 ...

  5. [HNOI2003]消防局的设立 (贪心)

    [HNOI2003]消防局的设立 题目描述 2020年,人类在火星上建立了一个庞大的基地群,总共有n个基地.起初为了节约材料,人类只修建了n-1条道路来连接这些基地,并且每两个基地都能够通过道路到达, ...

  6. 我之理解---计时器setTimeout 和clearTimeout

    今天在写个图片切换的问题 有动画滞后的问题,才动手去查setTimeout 和clearTimeout.之前写的图片播放器也有类似的问题,有自动start按钮 和stop按钮, 其他都正常,问题出在每 ...

  7. 「6月雅礼集训 2017 Day1」说无可说

    [题目大意] 给出n个字符串,求有多少组字符串之间编辑距离为1~8. n<=200,∑|S| <= 10^6 [题解] 首先找编辑距离有一个n^2的dp,由于发现只找小于等于8的,所以搜旁 ...

  8. Swift教程之运算符重载

    http://blog.csdn.net/mengxiangyue/article/details/43437797 原文地址:http://www.raywenderlich.com/80818/o ...

  9. Spring容器整合WebSocket

    原链接:http://blog.csdn.net/canot/article/details/52575054 WebSocker是一个保持web客户端与服务器长链接的技术.这样在两者通信过程中如果服 ...

  10. 只运行一个exe应用程序的使用案例

    应用程序的exe启动设置 using System;using System.Diagnostics;using System.Reflection;using System.Runtime.Inte ...