题目链接:http://poj.org/problem?id=3621

Sightseeing Cows

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 11526   Accepted: 3930

Description

Farmer John has decided to reward his cows for their hard work by taking them on a tour of the big city! The cows must decide how best to spend their free time.

Fortunately, they have a detailed city map showing the L (2 ≤ L ≤ 1000) major landmarks (conveniently numbered 1.. L) and the P (2 ≤ P ≤ 5000) unidirectional cow paths that join them. Farmer John will drive the cows to a starting landmark of their choice, from which they will walk along the cow paths to a series of other landmarks, ending back at their starting landmark where Farmer John will pick them up and take them back to the farm. Because space in the city is at a premium, the cow paths are very narrow and so travel along each cow path is only allowed in one fixed direction.

While the cows may spend as much time as they like in the city, they do tend to get bored easily. Visiting each new landmark is fun, but walking between them takes time. The cows know the exact fun values Fi (1 ≤ Fi ≤ 1000) for each landmark i.

The cows also know about the cowpaths. Cowpath i connects landmark L1i to L2i (in the direction L1i -> L2i ) and requires time Ti (1 ≤ Ti ≤ 1000) to traverse.

In order to have the best possible day off, the cows want to maximize the average fun value per unit time of their trip. Of course, the landmarks are only fun the first time they are visited; the cows may pass through the landmark more than once, but they do not perceive its fun value again. Furthermore, Farmer John is making the cows visit at least two landmarks, so that they get some exercise during their day off.

Help the cows find the maximum fun value per unit time that they can achieve.

Input

* Line 1: Two space-separated integers: L and P
* Lines 2..L+1: Line i+1 contains a single one integer: Fi
* Lines L+2..L+P+1: Line L+i+1 describes cow path i with three space-separated integers: L1i , L2i , and Ti

Output

* Line 1: A single number given to two decimal places (do not perform explicit rounding), the maximum possible average fun per unit time, or 0 if the cows cannot plan any trip at all in accordance with the above rules.

Sample Input

5 7
30
10
10
5
10
1 2 3
2 3 2
3 4 5
3 5 2
4 5 5
5 1 3
5 2 2

Sample Output

6.00

Source

题目概括:

有 L 个 landmarks, P条 cow path(有向边),每个点可获得娱乐值 Fi ,不过每条边需要花费时间 Ti,我们要求的是选走任意几个点(路径要构成一个环)单位时间获得最大的娱乐值即 求 ΣFi / ΣTi 的最大值。

解题思路:

要从N中取K,并且求 ΣFi / ΣTi 的最大值,很明显用二分+01分数规划

令 ΣFi / ΣTi >= X, 则 ΣFi - ΣTi*X >= 0, 也就转换为了求这个有向图是否存在正环,我们直到SPFA可以轻松通过dfs判断点的访问次数来判断是否有负环,我们只需要把SPFA的求最短路的判断条件换成求最长路的判断条件即可以判断是否存在正环了。

AC code:

 ///POJ 3621 01分数规划+SPFA判断正环
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <algorithm>
#include <string.h>
#include <vector>
#include <math.h>
#include <limits>
#include <set>
#include <map>
#define INF ox3f3f3f3f
using namespace std; const int MAXN = ;
int v[MAXN]; ///点权
int fst[MAXN], vb[MAXN], vc[MAXN], nxt[MAXN];
bool vis[MAXN], fh; ///记录访问点的次数
double dist[MAXN]; ///用于判断正环
int N, M, cnt; void add(int a, int b, int c) ///静态邻接表
{
++cnt;
nxt[cnt] = fst[a];
fst[a] = cnt;
vb[cnt] = b;
vc[cnt] = c; ///边权
} void spfa_dfs(int p, double x)
{
vis[p] = true;
for(int e = fst[p]; e; e = nxt[e])
{
double C = v[vb[e]]-x*vc[e];
if(dist[vb[e]] >= C+dist[p]) continue; ///与spfa判断负环恰好相反,只取大的
if(vis[vb[e]])
{
fh = ; return;
}
dist[vb[e]] = C+dist[p];
spfa_dfs(vb[e], x);
if(fh) return;
}
vis[p] = ;
} bool ok(double x)
{
for(int i = ; i <= N; i++)
{
vis[i] = dist[i] = ;
}
fh = ;
for(int i = ; i <= N; i++)
{
spfa_dfs(i, x);
if(fh) return true; ///有正环
}
return false;
}
int main()
{
scanf("%d%d", &N, &M);
for(int i = ; i <= N; i++)
scanf("%d", &v[i]);
for(int i = ; i <= M; i++)
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
add(a, b, c);
}
double l = , r = ;
while(r-l>1e-)
{
double mid = (l+r)/2.0;
if(ok(mid)) l = mid;
else r = mid;
}
printf("%.2lf\n", l); return ;
}

POJ 3621 Sightseeing Cows 【01分数规划+spfa判正环】的更多相关文章

  1. POJ 3621 Sightseeing Cows 01分数规划,最优比例环的问题

    http://www.cnblogs.com/wally/p/3228171.html 题解请戳上面 然后对于01规划的总结 1:对于一个表,求最优比例 这种就是每个点位有benefit和cost,这 ...

  2. POJ 3621 Sightseeing Cows | 01分数规划

    题目: http://poj.org/problem?id=3621 题解: 二分答案,检查有没有负环 #include<cstdio> #include<algorithm> ...

  3. POJ3621Sightseeing Cows[01分数规划 spfa(dfs)负环 ]

    Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9703   Accepted: 3299 ...

  4. 2018.09.24 bzoj1486: [HNOI2009]最小圈(01分数规划+spfa判负环)

    传送门 答案只保留了6位小数WA了两次233. 这就是一个简单的01分数规划. 直接二分答案,根据图中有没有负环存在进行调整. 注意二分边界. 另外dfs版spfa判负环真心快很多. 代码: #inc ...

  5. bzoj3597[Scoi2014]方伯伯运椰子 01分数规划+spfa判负环

    3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 594  Solved: 360[Submit][Statu ...

  6. 2018.09.09 poj2949Word Rings(01分数规划+spfa判环)

    传送门 这题要先巧妙的转化一下. 对于每个字符串,我们把头尾的两个小字符串对应的点连边,边权是这个字符串的长度. 这样最多会出现26*26个点. 这个时候就只用求出边权和跟边数的最大比值了. 这个显然 ...

  7. [HNOI2009]最小圈 分数规划 spfa判负环

    [HNOI2009]最小圈 分数规划 spfa判负环 题面 思路难,代码简单. 题目求圈上最小平均值,问题可看为一个0/1规划问题,每个边有\(a[i],b[i]\)两个属性,\(a[i]=w(u,v ...

  8. 洛谷P2868 [USACO07DEC]观光奶牛Sightseeing Cows(01分数规划)

    题意 题目链接 Sol 复习一下01分数规划 设\(a_i\)为点权,\(b_i\)为边权,我们要最大化\(\sum \frac{a_i}{b_i}\).可以二分一个答案\(k\),我们需要检查\(\ ...

  9. 2018.09.12 poj3621Sightseeing Cows(01分数规划+spfa判环)

    传送门 01分数规划板题啊. 发现就是一个最优比率环. 这个直接二分+spfa判负环就行了. 代码: #include<iostream> #include<cstdio> # ...

随机推荐

  1. 问题记录——java.lang.IllegalArgumentException: Illegal character in scheme name at index 0

    以下http请求报错是因为,请求的地址前面有个空格.... 2019-01-09 03:30:23,154 ERROR [business.modules.merchantreportresult.s ...

  2. [转]NetCat简介

    NetCat是一个非常简单的Unix工具,可以读.写TCP或UDP网络连接(network connection).它被设计成一个可靠的后端(back-end) 工具,能被其它的程序或脚本直接地或容易 ...

  3. (转)SSH批量分发管理&非交互式expect

    目录 1 SSH批量分发管理 1.1 测试环境 1.2 批量管理步骤 1.3 批量分发管理实例 1.3.1 利用sudo提权来实现没有权限的用户拷贝 1.3.2 利用sudo提权开发管理脚本 1.3. ...

  4. 前端性能优化之优化图片 && 优化显示图片

    前端图片优化一直以来都是热门话题,从需求上来看,很多站点往往是图片体积大于代码体积, 图片请求多余代码文件请求, 给前端的性能带来了很大的困扰,那么应该如何解决呢? 零. 认识图片 我们通常使用的图片 ...

  5. 01-struts2配置详解

    1 struts.xml配置详解 <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE strut ...

  6. hibernate框架的搭建

    1 导入所需的jar包 1 导入hibernate必须的jar包 2 导入驱动包 2 创建数据库,准备表,实体 1 创建hibernate数据库 CREATE DATABASE hibernate; ...

  7. TOJ 1258 Very Simple Counting

    Description Let f(n) be the number of factors of integer n. Your task is to count the number of i(1 ...

  8. Maven工程红色感叹号,且工程无红叉错误

    很可能是jar包不对,可以将maven库里的jar包删除,从 http://mvnrepository.com/ 根据jar包版本号下载到本地maven库,并在pom.xml里引入jar依赖 这次ja ...

  9. 【Linux相识相知】文本处理工具之grep\egrep\fgrep及正则表达式

    常说Linux上有文本处理的三剑客,grep.sed和awk,本文就grep做出详细的描述,并引出正则表达式. grep NAME:打印模式匹配的行 SYNOPISIS: grep [OPTIONS] ...

  10. flutter Failed to setup Skia Gr context导致白屏

    添加 --enable-software-rendering参数运行 G:\soft\flutter\project\hello_world> flutter run --enable-soft ...