传送门:

http://acm.hdu.edu.cn/showproblem.php?pid=1221

Rectangle and Circle

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3434    Accepted Submission(s): 904

Problem Description
Given a rectangle and a circle in the coordinate system(two edges of the rectangle are parallel with the X-axis, and the other two are parallel with the Y-axis), you have to tell if their borders intersect.

Note: we call them intersect even if they are just tangent. The circle is located by its centre and radius, and the rectangle is located by one of its diagonal.

 
Input
The first line of input is a positive integer P which indicates the number of test cases. Then P test cases follow. Each test cases consists of seven real numbers, they are X,Y,R,X1,Y1,X2,Y2. That means the centre of a circle is (X,Y) and the radius of the circle is R, and one of the rectangle's diagonal is (X1,Y1)-(X2,Y2).
 
Output
For each test case, if the rectangle and the circle intersects, just output "YES" in a single line, or you should output "NO" in a single line.
 
Sample Input
2
1 1 1 1 2 4 3
1 1 1 1 3 4 4.5
 
Sample Output
YES
NO
 
Author
weigang Lee
 
Source
 
Recommend
 
    判断圆和矩形是不是相交的
 
    给出圆心点,半径,矩形对角线两点
 
    我们只要求出圆心到矩形的最短距离L和圆心到矩形的最长距离R.
    如果L>r(r为圆半径),圆肯定与矩形不相交.
    如果R<r,圆包含了矩形,依然与矩形不相交.
    如果L<=r且R>=r,那么圆肯定与矩形相交.
 
    最短距离 圆心到边上点的距离的最小值
    最长距离:圆心到四个点距离的最大值
 
    注意矩形是平行xy轴的,计算方便了很多
 
code:
#include<bits/stdc++.h>
using namespace std;
double dis(double x1,double y1,double x2,double y2)
{
return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}
double f(double x,double y,double x1,double y1,double x2,double y2)//圆心到矩形边的距离最小值
{
if(x1==x2)
{
if(y<=max(y1,y2)&&y>=min(y1,y2))
{
return fabs(x-x1);
}else
{
double b=dis(x,y,x1,y1);
double c=dis(x,y,x2,y2);
double result=min(b,c);
return result;
}
}else if(y1==y2)
{
if(x<=max(x1,x2)&&x>=min(x1,x2))
{
return fabs(y-y1);
}else
{
double b=dis(x,y,x1,y1);
double c=dis(x,y,x2,y2);
double result=min(b,c);
return result;
}
}
}
int main()
{
double x,y,r,x1,y1,x2,y2;
int t;
scanf("%d",&t);
while(t--)
{
scanf("%lf %lf %lf %lf %lf %lf %lf",&x,&y,&r,&x1,&y1,&x2,&y2);
double x3=x1,y3=y2;
double x4=x2,y4=y1;
double l1=f(x,y,x1,y1,x3,y3);
double l2=f(x,y,x1,y1,x4,y4);
double l3=f(x,y,x2,y2,x3,y3);
double l4=f(x,y,x2,y2,x4,y4); double L=min(l1,min(l2,min(l3,l4))); double r1=dis(x,y,x1,y1);
double r2=dis(x,y,x2,y2);
double r3=dis(x,y,x3,y3);
double r4=dis(x,y,x4,y4); double R=max(r1,max(r2,max(r3,r4))); if(L>r)
printf("NO\n");
else if(R<r)
printf("NO\n");
else if(L<=r&&R>=r)
printf("YES\n");
}
return ;
}

HDU 1221 Rectangle and Circle(判断圆和矩形是不是相交)的更多相关文章

  1. 判断圆和矩形是否相交C - Rectangle and Circle

    Description Given a rectangle and a circle in the coordinate system(two edges of the rectangle are p ...

  2. HDU 1221 Rectangle and Circle 考虑很多情况,good题

    http://acm.hdu.edu.cn/showproblem.php?pid=1221 114 92 31 95 13 96 3 这题只需要判断圆和矩形是否相交,然后在里面是不算相交的. 那么就 ...

  3. poj1410(判断线段和矩形是否相交)

    题目链接:https://vjudge.net/problem/POJ-1410 题意:判断线段和矩形是否相交. 思路:注意这里的相交包括线段在矩形内,因此先判断线段与矩形的边是否相交,再判断线段的两 ...

  4. Judge Route Circle --判断圆路线

    Initially, there is a Robot at position (0, 0). Given a sequence of its moves, judge if this robot m ...

  5. HDU 1110 Equipment Box (判断一个大矩形里面能不能放小矩形)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1110 Equipment Box Time Limit: 2000/1000 MS (Java/Oth ...

  6. PHP判断两个矩形是否相交

    <?php $s = is_rect_intersect(1,2,1,2,4,5,0,3); var_dump($s); /* 如果两个矩形相交,那么矩形A B的中心点和矩形的边长是有一定关系的 ...

  7. C# 判断两个矩形是否相交

    源代码 public bool JudgeRectangleIntersect(double RecAleftX, double RecAleftY, double RecArightX, doubl ...

  8. 【LeetCode】1401. 圆和矩形是否有重叠 Circle and Rectangle Overlapping

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 利用公式 日期 题目地址:https://leetco ...

  9. A Round Peg in a Ground Hole - POJ 1584 (判断凸多边形&判断点在多边形内&判断圆在多边形内)

    题目大意:首先给一个圆的半径和圆心,然后给一个多边形的所有点(多边形按照顺时针或者逆时针给的),求,这个多边形是否是凸多边形,如果是凸多边形在判断这个圆是否在这个凸多边形内.   分析:判断凸多边形可 ...

随机推荐

  1. 【数据结构】最小生成树之prim算法和kruskal算法

    在日常生活中解决问题经常需要考虑最优的问题,而最小生成树就是其中的一种.看了很多博客,先总结如下,只需要您20分钟的时间,就能完全理解. 比如:有四个村庄要修四条路,让村子能两两联系起来,这时就有最优 ...

  2. HTML的注释方式对JSP的JSTL不管用

    <fmt:parseNumber var="y" integerOnly="true" type="number" value=&qu ...

  3. asp 2.0 ajax triggers 触发更新

  4. js判断下拉框改变状态

    <script> $('#questSort').change(function(){ //此处写状态改变要实现的功能 var s=$('#questSort').children('op ...

  5. js中判断对象是否存在

    s中判断对象是否存在,写法有很多种: 第一种:if (!myObj) { var myObj = { }; }第二种:var global = this;  if (!global.myObj) {  ...

  6. Xcode10 闪退问题

    最新更新了iOS12,mac10.13.6,xcode10之后,打开之前的项目,只要进行import,xcode就会闪退.那么就来看一下解决方案: Xcode10 新增了一个构建系统起名“New Bu ...

  7. PAT 1076 Forwards on Weibo

    #include <cstdio> #include <cstdlib> #include <vector> #include <queue> #inc ...

  8. typeScript入门(三)接口

      接口我感觉是很常用的一块 定义标准: 接口的作用:在面向对象的编程中,接口是一种规范的定义,它定义了行为和动作的规范,在程序设计里面,接口起到一种限制和规范的作用.接口定义了某一批类所需要遵守的规 ...

  9. 微服务学习笔记一:Spring Cloud简介

    1.Spring Cloud是一个工具集:Spring   Cloud是在Spring    Boot的基础上构建的,用于简化分布式系统构建的工具集:使架构师在创建和发布微服务时极为便捷和有效. Sp ...

  10. scss-@for 指令

    此指令用于循环输出,具有两种循环方式,下面分别做一下介绍. (1).@for $var from <start> through <end>: 此种方式的遍历索引区间是[sta ...