零、Inception-Resnet-V2的网络模型

整体结构如下,整体设计简洁直观:

其中的stem部分网络结构如下,inception设计,并且conv也使用了7*1+1*7这种优化形式:

inception-resnet-A部分设计,inception+残差设计:

截自https://my.oschina.net/gyspace/blog/893788

一、Inception

基本思想:不需要人为决定使用哪个过滤器,或是否需要池化,而是由网络自行确定这些参数,你可以给网络添加这些参数的所有可能值,然后把这些输出连接起来,让网络自己学习它需要什么样的参数,采用哪些过滤器组合。

细节:网络中存在softmax分支,原因——即便是隐藏单元和中间层也参与了特征计算,它们也能预测图片的分类,它在Inception网络中起到一种调整的效果,防止过拟合。

二、Resnet

残差网络就是残差块的堆叠,这样可以把网络设计的很深;

残差网络和普通网络的差异是,al+2在进行非线性变化前,把al的数据拷贝了一份与zl+2累加后进行了非线性变换;

对于普通的卷积网络,用梯度下降等常用的优化算法,随着网络深度的增加,训练误差会呈现出先降低后增加的趋势,而我们期望的理想结果是随着网络深度的增加训练误差逐渐减小,而Resnet随着网络深度的增加训练误差会一直减小。

三、1*1卷积的主要作用有以下几点:

1、降维( dimension reductionality )。比如,一张500 * 500且厚度depth为100 的图片在20个filter上做1*1的卷积,那么结果的大小为500*500*20。

2、加入非线性。卷积层之后经过激励层,1*1的卷积在前一层的学习表示上添加了非线性激励( non-linear activation ),提升网络的表达能力;可以在保持feature map尺度不变的(即不损失分辨率)的前提下大幅增加非线性特性(利用后接的非线性激活函数),把网络做的很deep。

当1*1卷积出现时,在大多数情况下它作用是升/降特征的维度,这里的维度指的是通道数(厚度),而不改变图片的宽和高。

Inception-Resnet-V2的更多相关文章

  1. GoogLeNet 之 Inception v1 v2 v3 v4

    论文地址 Inception V1 :Going Deeper with Convolutions Inception-v2 :Batch Normalization: Accelerating De ...

  2. 从Inception v1,v2,v3,v4,RexNeXt到Xception再到MobileNets,ShuffleNet,MobileNetV2

    from:https://blog.csdn.net/qq_14845119/article/details/73648100 Inception v1的网络,主要提出了Inceptionmodule ...

  3. Feature Extractor[ResNet v2]

    0. 背景 何凯明大神等人在提出了ResNet网络结构之后,对其做了进一步的分析工作,详细的分析了ResNet 构建块能起作用的本质所在.并通过一系列的实验来验证恒等映射的重要性,并由此提出了新的构建 ...

  4. inception - resnet

    只有reduction-A是共用的,只是改了其中的几个参数 linear是线性激活. 结构是一样的

  5. AI:IPPR的数学表示-CNN结构进化(Alex、ZF、Inception、Res、InceptionRes)

    前言: 文章:CNN的结构分析-------:  文章:历年ImageNet冠军模型网络结构解析-------: 文章:GoogleLeNet系列解读-------: 文章:DNN结构演进Histor ...

  6. 海康威视研究院ImageNet2016竞赛经验分享

    原文链接:https://zhuanlan.zhihu.com/p/23249000 目录 场景分类 数据增强 数据增强对最后的识别性能和泛化能力都有着非常重要的作用.我们使用下面这些数据增强方法. ...

  7. 学习笔记TF034:实现Word2Vec

    卷积神经网络发展趋势.Perceptron(感知机),1957年,Frank Resenblatt提出,始祖.Neocognitron(神经认知机),多层级神经网络,日本科学家Kunihiko fuk ...

  8. 谷歌开源的TensorFlow Object Detection API视频物体识别系统实现教程

    视频中的物体识别 摘要 物体识别(Object Recognition)在计算机视觉领域里指的是在一张图像或一组视频序列中找到给定的物体.本文主要是利用谷歌开源TensorFlow Object De ...

  9. 第二十二节,TensorFlow中的图片分类模型库slim的使用、数据集处理

    Google在TensorFlow1.0,之后推出了一个叫slim的库,TF-slim是TensorFlow的一个新的轻量级的高级API接口.这个模块是在16年新推出的,其主要目的是来做所谓的“代码瘦 ...

  10. Tensorflow 使用slim框架下的分类模型进行分类

    Tensorflow的slim框架可以写出像keras一样简单的代码来实现网络结构(虽然现在keras也已经集成在tf.contrib中了),而且models/slim提供了类似之前说过的object ...

随机推荐

  1. for语句中多重定义

    "}; vector<string> vecStr(Arr, Arr + sizeof(Arr)/sizeof(string)); , sz = vecStr.size(); i ...

  2. valn 配置

    内核修改: /device drivers/Network device support/MAC-VLAN support 1.创建目录和文件#cd /usr#mkdir vlan#cd vlan#c ...

  3. 0801 RESTAPI设计,DRF 序列化

    1.内容回顾    1.restframework serializer(序列化)的简单使用                QuereySet([obj,obj,obj])  -->  JSON ...

  4. OpenStack虚拟机创建过程中镜像格式的的变化过程

    Glance用来作为独立的大规模镜像查找服务,当它与Nova和Swift配合使用时,就为OpenStack提供了虚拟机镜像的查找服务,像所有的OpenStack项目一样,遵循以下设计思想: 基于组件的 ...

  5. Ubuntu 12.04下安装OpenCV 2.4.2

    http://sourceforge.net/projects/opencvlibrary/files/ Ubuntu 12.04下安装OpenCV 2.4.2 http://blog.csdn.ne ...

  6. ubuntu中如何添加IP

    编辑网卡配置文件vi /etc/network/interfaces 在配置文件下增加新的IP配置 之后重启网络/etc/init.d/networking restart

  7. setup in xunit

    https://xunit.github.io/docs/shared-context Shared Context between Tests It is common for unit test ...

  8. 【codevs1002】搭桥(prim)

    题目描述: 这是道题题意有点迷(或者是我语文不好),但其实实际上求的就是图中连通块的个数,然后在连通块与连通块之间连边建图跑最小生成树.但是……这个图可能是不连通的……求桥的数量和总长 于是我立刻想到 ...

  9. cdq分治入门and持续学习orz

    感觉cdq分治是一个很有趣的算法 能将很多需要套数据结构的题通过离线来做 目前的一些微小的理解 在一般情况下 就像求三维偏序xyz 就可以先对x排序 然后分治 1 cdq_x(L,M) ; 2 提取出 ...

  10. Specify compute hosts with SSDs

    scheduler_driver = nova.scheduler.filter_scheduler.FilterScheduler scheduler_available_filters = nov ...