求最长下降子序列和LIS基本思路是完全一样的,都是很经典的DP题目。

问题大都类似于 有一个序列 a1,a2,a3...ak..an,求其最长下降子序列(或者求其最长不下降子序列)的长度。

以最长下降子序列为例

用a[i]存储序列a的第i个元素(i: 1 to n)

用f[i]表示算上第i个位置的元素时最长子序列为f[i],

O(n^2)解法:

就是说在1 --- i -1之间必可以找到下标为j的元素a[j]使得f[j]是f[1]---f[i-1]之中最大的,则f[i] = f[j] + 1.

(注意要满足a[j]>a[i])

当i (1 to n)求得f[1] -- f[n]后只要再求得f[1]--f[n]之中最大的就是ans了。

状态转移方程:

f[i] = 1 (i = 1)//只有第一个字符

f[i] = f[j] + 1(a[i] < a[j] )//若是最长不下降则满足a[i] >= a[j].

代码实现:

//h[i]为母序列,dp[i]代表到第i个位置算上h[]i后得到的最长下降子序列长度ans是最长下降子序列长度
//f[i]代表到第i个位置算上h[]i后得到的最长不下降子序列长度min‡是最长不下降子序列长度
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std; #define maxint 0x7f7f7f7f
const int N = ; int h[N],dp[N],f[N];
int main(){
// freopen("in.txt","r",stdin);
// freopen(".txt","w",stdout);
int n = ;
int ans = -maxint,min = -maxint;
while(scanf("%d",&h[n]) != EOF){
n ++;
}
dp[] = f[] = ;
for(int i = ; i < n; i ++){
dp[i] = ;
f[i] = ;
for(int j = ; j < i; j ++){
if(dp[j]+>dp[i] && h[j] > h[i])
dp[i] = dp[j]+;
if(f[j]+>f[i] && h[j] < h[i])
f[i] = f[j]+;
}
}
for(int i = ; i < n; i ++){
if(ans<dp[i]){
ans = dp[i];
}
if(min<f[i])
min = f[i];
} printf("%d\n%d\n",ans,min); return ;
}

O(n*logn)解法

思路:

令数组c[k]记录使f[]= k时的a[i]的最小值,len表示此时最长下降子列的长度

在第i个位置有两种情况

1.a[i]<c[k],此时满足降序只需将a[i]接在c[k]后面,len +1;

2.a[i]>=c[k],则需要在a[1] 到c[k]之间找到一个大于它的最小值a[j],然后将a[i]置于j+1的位置,len = k = j+1.

由于c[k]不然具有单调性因而寻找a[j]的过程可以用二分。这也就是算法复杂度达到O(n*logn)的原因。

最后len的值也就是最长子序列的长度。

代码实现:

#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = ;
//二分查找返回大于a[i]的最小值的下标
int bSearch(int c[],int len,int n){
int left = ,right = len,mid;
while(left <= right){
mid = (left+right)/;
if(n > c[mid])
right = mid - ;
else if(n < c[mid])
left = mid + ;
else
return mid; }
return left;
} int a[N],c[N];
int main(){
int n = ,j,len;
int count = ;
// freopen("in.txt","r",stdin);
// freopen("out.txt","w",stdout);
while(scanf("%d",&a[n]) != EOF){
n ++;
}
c[] = a[];
len = ;
for(int i = ; i < n; i ++){
j = bSearch(c,len,a[i]);
c[j] = a[i];
if(j > len)//没找到,说明a[i]<c[k],根据二分查找的特点刚好j比len大一,将a[i]加到c[len+1]的位置
len = j;//更新len
}
printf(" ans = %d\n",len); return ;
}

最长下降子序列O(n^2)及O(n*log(n))解法的更多相关文章

  1. BUY LOW, BUY LOWER_最长下降子序列

    Description The advice to "buy low" is half the formula to success in the bovine stock mar ...

  2. 【最长下降子序列】【动态规划】【二分】XMU 1041 Sequence

    题目链接: http://acm.xmu.edu.cn/JudgeOnline/problem.php?id=1041 题目大意: 一个二维平面,上面n(n<=1 000 000)个点.问至少选 ...

  3. 【最长下降子序列的长度和个数】 poj 1952

    转自http://blog.csdn.net/zhang360896270/article/details/6701589 这题要求最长下降子序列的长度和个数,我们可以增加数组maxlen[size] ...

  4. POJ-1887 Testing the CATCHER(dp,最长下降子序列)

    Testing the CATCHER Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 16515 Accepted: 6082 ...

  5. ZZNU 1719(最长上升子序列+最长下降子序列)

    先吐血一发,噗! 再吐血一次,啊啊啊啊! 好吧,做了那么多次最长上升子序列,看这题看了半天才发现还有最长下降子序列,呵呵哒! AC代码: #include<stdio.h>//老恶心#in ...

  6. HDOJ(1069)最长下降子序列

    每个箱子可有3种叠加方式,所以有3*n个箱子.将箱子按长度由大到小排序,有求箱子按宽度的最长下降子序列的高度之和即可. #include<cstdio> #include<algor ...

  7. 九度OJ 1112:拦截导弹 (DP、最长下降子序列)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:3124 解决:1525 题目描述: 某国为了防御敌国的导弹袭击,开发出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能 ...

  8. hdu1160简单dp最长下降子序列

    /* 简单dp,要记录顺序 解:先排序,然后是一个最长下降子序列 ,中间需记录顺序 dp[i]=Max(dp[i],dp[j]+1); */ #include<stdio.h> #incl ...

  9. POJ 1836 Alignment(DP max(最长上升子序列 + 最长下降子序列))

    Alignment Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 14486   Accepted: 4695 Descri ...

随机推荐

  1. java--字符串

    一.基本数据类型 基本类型 大小 对应的包装类 最小值 最大值 byte 8-bit Java.lang.Byte -128 +127 short 2Byte= 16bit Java.lang.Sho ...

  2. maven项目断点依赖maven插件

         

  3. gulp学习-gulpfile

    安装gulp 假设已经安装了node 和npm (淘宝的cnpm很适合国内使用). 1.首页全局安装gulp. 1 npm install --global gulp 2.其次局部安装gulp.(注: ...

  4. Java笔记:修饰符

    Synchronized 修饰符 Synchronized 关键字声明的方法同一时间只能被一个线程访问.Synchronized 修饰符可以应用于四个访问修饰符. 实例 public synchron ...

  5. 文件描述符、文件表项指针、inode节点的关系

    内核使用3种数据结构表示打开的文件,他们之间的关系决定了在文件共享方面一个进程对另一个进程的影响. (1) 每个进程在进程表中都有一个纪录项,纪录项中包含一张打开文件描述符表,每个文件描述符各占一项, ...

  6. iOS推送小结(证书的生成、客户端的开发、服务端的开发)

    1.推送过程简介 1.1.App启动过程中,使用UIApplication::registerForRemoteNotificationTypes函数与苹果的APNS服务器通信,发出注册远程推送的申请 ...

  7. C语言学习笔记二

    第二章 数组 一,定义: 数组是有序数据的结合,同一数据类型 整型数组     int arr[10]={0,1,2,4,5,6,7,8,9}; 字符数组     char str[6]={'h',' ...

  8. 51nod1174(RMQ)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1174 题意:中文题诶- 思路:RMQ模板题 关于RMQ: h ...

  9. 浅析/dev/shm

    一,/dev/shm 概念 /dev/shm 是一个tmpfs文件系统,临时文件系统,是基于内存的文件系统,也就是说/dev/shm中的文件是直接写入内存的,而不占用硬盘空间. 在Centos和Red ...

  10. [BI项目记]-TFS Express备份和恢复

    在项目中对TFS进行备份操作是日常重要的工作之一,此篇主要描述如何对TFS Express进行备份,并且在另外一台服务器上进行恢复. 以下是操作的几个关键点: 备份数据库,在TFS管理工具中就可以完成 ...