RocketMQ性能压测分析(转)
原创文章,转载请注明出处:http://jameswxx.iteye.com/blog/2093785
一 机器部署
1.1 机器组成
1台nameserver
1台broker 异步刷盘
2台producer
1.2 硬件配置
CPU 两颗x86_64cpu,每颗cpu12核,共24核
内存 48G
网卡 千兆网卡
1.3 部署结构

1.4 内核参数
broker是一个存储型的系统,针对磁盘读写有自己的刷盘策略,大量使用文件内存映射,文件句柄和内存消耗量都比较巨大。因此,系统的默认设置并不能使RocketMQ发挥很好的性能,需要对系统的pagecache,内存分配,I/O调度,文件句柄限制做一些针对性的参数设置。
系统I/O和虚拟内存设置
echo 'vm.overcommit_memory=1' >> /etc/sysctl.conf
echo 'vm.min_free_kbytes=5000000' >> /etc/sysctl.conf
echo 'vm.drop_caches=1' >> /etc/sysctl.conf
echo 'vm.zone_reclaim_mode=0' >> /etc/sysctl.conf
echo 'vm.max_map_count=655360' >> /etc/sysctl.conf
echo 'vm.dirty_background_ratio=50' >> /etc/sysctl.conf
echo 'vm.dirty_ratio=50' >> /etc/sysctl.conf
echo 'vm.page-cluster=3' >> /etc/sysctl.conf
echo 'vm.dirty_writeback_centisecs=360000' >> /etc/sysctl.conf
echo 'vm.swappiness=10' >> /etc/sysctl.conf
系统文件句柄设置
echo 'ulimit -n 1000000' >> /etc/profile
echo 'admin hard nofile 1000000' >> /etc/security/limits.conf
系统I/O调度算法
1.5 JVM参数
采用RocketMQ默认设置
-server -Xms4g -Xmx4g -Xmn2g -XX:PermSize=128m -XX:MaxPermSize=320m -XX:+UseConcMarkSweepGC -XX:+UseCMSCompactAtFullCollection -XX:CMSInitiatingOccupancyFraction=70 -XX:+CMSParallelRemarkEnabled -XX:SoftRefLRUPolicyMSPerMB=0 -XX:+CMSClassUnloadingEnabled -XX:SurvivorRatio=8 -XX:+DisableExplicitGC -verbose:gc -Xloggc:/root/rocketmq_gc.log -XX:+PrintGCDetails -XX:-OmitStackTraceInFastThrow
二 性能评测
2.1 评测目的
2.2 评测指标
最高的TPS不代表最适合的TPS,必须在TPS和系统资源各项指标之间取得一个权衡,系统资源快达到极限,但尚能正常运转,此时的TPS是比较合适的。比如ioutil最好不要超过75%,cpu load最好不超过总的核数或者太多,没有发生频繁的swap导致较大的内存颠簸。所以不能只关注TPS,同时要关注以下指标:
消息:TPS
cpu:load,sy,us
内存:useed,free,swap,cache,buffer
I/O:iops,ioutil,吞吐量(数据物理读写大小/秒)
网络:网卡流量
2.3 评测方式
两台producer起等量线程,不间断的向broker发送大小为2K的消息,2K消息意味着1000个字符,这个消息算比较大了,完全可以满足业务需要。
2.4 评测结果
TPS比较高
经过长时间测试和观察,单个borker TPS高达16000,也就是说服务器能每秒处理16000条消息,且消费端及时消费,从服务器存储消息到消费端消费完该消息平均时延约为1.3秒,且该时延不会随着TPS变大而变大,是个比较稳定的值。
Broker稳定性较高
两台producer一共启动44个线程10个小时不停发消息,broker非常稳定,这可简单意味着实际生产环境中可以有几十个producer向单台broker高频次发送消息,但是broker还会保持稳定。在这样比较大的压力下,broker的load最高才到3(24核的cpu),有大量的内存可用。
而且,连续10几小时测试中,broker的jvm非常平稳,没有发生一次fullgc,新生代GC回收效率非常高,内存没有任何压力,以下是摘自gclog的数据:
2014-07-17T22:43:07.407+0800: 79696.377: [GC2014-07-17T22:43:07.407+0800: 79696.377: [ParNew: 1696113K->18686K(1887488K), 0.1508800 secs] 2120430K->443004K(3984640K), 0.1513730 secs] [Times: user=1.36 sys=0.00, real=0.16 secs]
新生代大小为2g,回收前内存占用约为1.7g,回收后内存占用17M左右,回收效率非常高。
关于磁盘IO和内存
平均单个物理IO耗时约为0.06毫秒,IO几乎没有额外等待,因为await和svctm基本相等。整个测试过程,没有发生磁盘物理读,因为文件映射的关系,大量的cached内存将文件内容都缓存了,内存还有非常大的可用空间。
系统的性能瓶颈
TPS到达16000后,再就上不去了,此时千兆网卡的每秒流量约为100M,基本达到极限了,所以网卡是性能瓶颈。不过,系统的IOUTIL最高已经到达40%左右了,这个数字已经不低了,所以即使网络流量增加,但是系统IO指标可能已经不健康了,总体来看,单机16000的TPS是比较安全的值。

随着线程数增加,最后稳定在3左右,对于总共24核的两颗CPU,这点load根本不算什么

内存非常平稳,总量48G,实际可用内存非常高
没有发生swap交换,不会因为频繁访问磁盘导致系统性能颠簸
大量内存被用来作为文件缓存,见cached指标,极大的避免了磁盘物理读

磁盘吞吐量

随着线程数增加,磁盘IOPS大约稳定在5000左右
注意非常重要的细节,即使在高达16000TPS时,磁盘仍然没有发生物理读,这和内存的cached指标是遥相呼应的,文件几乎全部在内存里,没有发生一次物理读,所以文件读的效率非常高,消息消费非常快



RocketMQ性能压测分析(转)的更多相关文章
- RocketMQ性能压测分析(转载)
一 机器部署 1.1 机器组成 1台nameserver 1台broker 异步刷盘 2台producer 2台consumer 1.2 硬件配置 CPU 两颗x86_64cpu,每颗 ...
- 软件性能测试分析与调优实践之路-JMeter对RPC服务的性能压测分析与调优-手稿节选
一.JMeter 如何通过自定义Sample来压测RPC服务 RPC(Remote Procedure Call)俗称远程过程调用,是常用的一种高效的服务调用方式,也是性能压测时经常遇到的一种服务调用 ...
- 【原】Nginx添加Content-MD5头部压测分析
如需转载,必须注明原文地址,请尊重作者劳动成果. http://www.cnblogs.com/lyongerr/p/5048464.html 本文介绍了webbenck安装,但是最后使用的是ab工具 ...
- 性能压测诡异的Requests/second 响应刺尖问题
最近一段时间都在忙着转java项目最后的冲刺,前期的coding翻代码.debug.fixbug都逐渐收尾,进入上线前的性能压测. 虽然不是大促前的性能压测要求,但是为了安全起见,需要摸个底心里有个数 ...
- 性能压测中的SLA,你知道吗?
本文是<Performance Test Together>(简称PTT)系列专题分享的第6期,该专题将从性能压测的设计.实现.执行.监控.问题定位和分析.应用场景等多个纬度对性能压测的全 ...
- 并发模式与 RPS 模式之争,性能压测领域的星球大战
本文是<如何做好性能压测>系列专题分享的第四期,该专题将从性能压测的设计.实现.执行.监控.问题定位和分析.应用场景等多个纬度对性能压测的全过程进行拆解,以帮助大家构建完整的性能压测的理论 ...
- jmeter系列-如何实现像loadrunner一样,多个并发用户先通过登录初始化,然后做并发的接口性能压测
自动转开发后,就很少关注性能测试方面的东西,最近在帮朋友做一个性能压测,由于朋友那边的公司比较小,环境比较简单,而且是对http服务进行的压测,所以最终 选用了jmeter来实现这个压测. 如下就是我 ...
- 性能压测,SQL查询异常
早上测试对性能压测,发现取sequence服务大量超时报错,查询线上的监控SQL: 大量这个查询,我在DeviceID和Isdelete上建有复合索引,应该很快,而且我测试了一下,取值,执行效率很高, ...
- jmeter性能压测瓶颈排查-网络带宽
问题: 有一台机器做性能压测的时候,无论开多少个线程,QPS一直压不上去,而服务器和数据库的性能指标(主要是CPU和内存)一直维持在很低的水平. 希望帮忙排查一下原因. 过去看了下进行压测的接口代码, ...
随机推荐
- hdu 5167(dfs)
Fibonacci Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total S ...
- 移动APP 支付宝快捷支付开发流程
[代码] [Java]代码 ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ...
- C# T4使用
最近升级我们的框架到微服务了,而且是dotnetcore 2.0. 然后一个新的框架,最基本的Model和与数据库交互的Repository,我们都是要利用T4自动生成的. 首先这个是代码结构,在这个 ...
- Unable to set localhost. This prevents creation of a GUID
原因:tomcat无法解析hostname 解决方案:解决方案:在/etc/hosts文件中添加hostname解析
- Response 部分功能
设置状态码的方法: void setStatus(int sc) void setStatus(int sc, String sm) 设置响应头的方法: void setHeade ...
- 【互动问答分享】第11期决胜云计算大数据时代Spark亚太研究院公益大讲堂
Q1:docker成熟度如何? Docker是2013年和2014年最火爆的云计算开源项目: Baidu公司是中国使用Docker最为深入和最大规模的公司,线上稳定运行数十万个Docker容器,目前已 ...
- ubuntu fcitx google 输入法打不出中括号【】
编辑/usr/share/fcitx/data/punc.mb.zh_CN, 将 [ · ] 「 」 这部分改成自己习惯的: [ [ ] ] 保存后,重启一下fcitx就OK了.
- noi题库 1.7 字符串
前九题 01:统计数字字符个数 总时间限制: 1000ms 内存限制: 65536kB 描述 输入一行字符,统计出其中数字字符的个数. 输入 一行字符串,总长度不超过255. 输出 输出为1行,输出字 ...
- 服务认证暴力破解工具Crowbar
服务认证暴力破解工具Crowbar Crowbar是Kali Linux新增的一款服务认证暴力破解工具.该工具支持OpenVPN.RDP.SSH和VNC服务.该工具具备常见的暴力破解功能,如主机字 ...
- 转:mysql group by 用法解析(详细)
group by 用法解析 group by语法可以根据给定数据列的每个成员对查询结果进行分组统计,最终得到一个分组汇总表. SELECT子句中的列名必须为分组列或列函数.列函数对于GROUP BY子 ...