TOJ 2815 Connect them (kruskal+并查集)
描述
You have n computers numbered from 1 to n and you want to connect them to make a small local area network (LAN). All connections are two-way (that is connecting computers i and j is the same as connecting computers j and i). The cost of connecting computer i and computer j is cij. You cannot connect some pairs of computers due to some particular reasons. You want to connect them so that every computer connects to any other one directly or indirectly and you also want to pay as little as possible.
Given n and each cij , find the cheapest way to connect computers.
输入
There are multiple test cases. The first line of input contains an integer T (T <= 100), indicating the number of test cases. Then T test cases follow.
The first line of each test case contains an integer n (1 < n <= 100). Then n lines follow, each of which contains n integers separated by a space. The j-th integer of the i-th line in these n lines is cij, indicating the cost of connecting computers i and j (cij = 0 means that you cannot connect them). 0 <= cij <= 60000, cij = cji, cii = 0, 1 <= i, j <= n.
输出
For each test case, if you can connect the computers together, output the method in in the following fomat:
i1 j1 i1 j1 ......
where ik ik (k >= 1) are the identification numbers of the two computers to be connected. All the integers must be separated by a space and there must be no extra space at the end of the line. If there are multiple solutions, output the lexicographically smallest one (see hints for the definition of "lexicography small") If you cannot connect them, just output "-1" in the line.
样例输入
2
3
0 2 3
2 0 5
3 5 0
2
0 0
0 0
样例输出
1 2 1 3
-1
提示
Another solution B different from A is a line of q integers: b1, b2, ...bq.
A is lexicographically smaller than B if and only if:
(1) there exists a positive integer r (r <= p, r <= q) such that ai = bi for all 0 < i < r and ar < br
OR
(2) p < q and ai = bi for all 0 < i <= p
题目来源
主要是选取权值最小的边构成树,kruskal+并查集
选完之后保存起来,还需要二次字典序排。
#include <stdio.h>
#include <algorithm>
#include <iostream>
using namespace std;
const int MAXN=; int N,cnt;
int lis[MAXN];
struct node{
int u,v,w;
}edge[MAXN*];
struct r{
int a,b;
}ans[MAXN]; int find(int x){
int temp=lis[x];
while(temp!=lis[temp]){
temp=lis[temp];
}
return temp;
}
void merge(int x, int y){
lis[x]=y;
} bool cmp1(node a, node b){
if(a.w!=b.w)return a.w < b.w;
return a.u < b.u;
}
bool cmp2(r a, r b){
if(a.a!=b.a)return a.a < b.a;
return a.b < b.b;
} int kruskal(){
int flag=;
sort(edge,edge+cnt,cmp1);
for(int i=; i<cnt; i++){
int x=find(edge[i].u);
int y=find(edge[i].v);
if(x!=y){
merge(x,y);
ans[flag].a=edge[i].u;
ans[flag].b=edge[i].v;
flag++;
}
}
return flag;
}
int main(int argc, char *argv[])
{
int T,v;
scanf("%d",&T);
while(T--){
cnt=;
scanf("%d",&N);
for(int i=; i<=N; i++){
lis[i]=i;
}
for(int i=; i<=N; i++){
for(int j=; j<=N; j++){
scanf("%d",&v);
if(i<j && v>){
edge[cnt].u=i;
edge[cnt].v=j;
edge[cnt].w=v;
cnt++;
}
}
}
int f=kruskal();
if(f!=N-){
printf("-1\n");
}else{
int flag=;
sort(ans,ans+f,cmp2);
for(int i=; i<f; i++){
if(flag)printf(" ");
printf("%d %d",ans[i].a,ans[i].b);
flag=;
}
printf("\n");
}
}
return ;
}
TOJ 2815 Connect them (kruskal+并查集)的更多相关文章
- Connect the Campus (Uva 10397 Prim || Kruskal + 并查集)
题意:给出n个点的坐标,要把n个点连通,使得总距离最小,可是有m对点已经连接,输入m,和m组a和b,表示a和b两点已经连接. 思路:两种做法.(1)用prim算法时,输入a,b.令mp[a][b]=0 ...
- Minimum Spanning Tree.prim/kruskal(并查集)
开始了最小生成树,以简单应用为例hoj1323,1232(求连通分支数,直接并查集即可) prim(n*n) 一般用于稠密图,而Kruskal(m*log(m))用于系稀疏图 #include< ...
- HDU 3371 Connect the Cities(并查集+Kruskal)
题目网址:http://acm.hdu.edu.cn/showproblem.php?pid=3371 思路: 这道题很明显是一道最小生成树的题目,有点意思的是,它事先已经让几个点联通了.正是因为它先 ...
- hdu 1863 畅通工程(Kruskal+并查集)
畅通工程 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submi ...
- POJ 3723 Conscription (Kruskal并查集求最小生成树)
Conscription Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 14661 Accepted: 5102 Des ...
- [CF891C] Envy - Kruskal,并查集
给出一个 n 个点 m条边的无向图,每条边有边权,共 Q次询问,每次给出 \(k\)条边,问这些边能否同时在一棵最小生成树上. Solution 所有最小生成树中某权值的边的数量是一定的 加完小于某权 ...
- BZOJ3545 [ONTAK2010]Peaks kruskal 并查集 主席树 dfs序
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ3545 题意概括 Description 在Bytemountains有N座山峰,每座山峰有他的高度 ...
- BZOJ3551 [ONTAK2010]Peaks加强版 kruskal 并查集 主席树 dfs序
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ3551 题意概括 Description 在Bytemountains有N座山峰,每座山峰有他的高度 ...
- 习题:过路费(kruskal+并查集+LCA)
过路费 [问题描述]在某个遥远的国家里,有 n 个城市.编号为 1,2,3,…,n.这个国家的政府修 建了 m 条双向道路,每条道路连接着两个城市.政府规定从城市 S 到城市 T 需 要收取的过路费 ...
随机推荐
- OnExit事件 OnChange事件
procedure TSetParkForm.edtPrePosExit(Sender: TObject); // 焦点移开 或已操作 begin if (G2.RowCount > 0) an ...
- C# static 字段初始值设定项无法引用非静态字段、方法或属性
问题:字段或属性的问题字段初始值设定项无法引用非静态字段.方法 下面代码出错的原因,在类中定义的字段为什么不能用? public string text = test(); //提示 字段或属性的问题 ...
- 阿里 RPC 框架 DUBBO 初体验
最近研究了一下阿里开源的分布式RPC框架dubbo,楼主写了一个 demo,体验了一下dubbo的功能. 快速开始 实际上,dubbo的官方文档已经提供了如何使用这个RPC框架example代码,基于 ...
- Linux安装Oracle调整tmpfs以突破1.7G的限制
调整/dev/shm的大小 ---------------------------------------------------------1.查看大小 df -h /dev/shm [@more@ ...
- postgresql删除活动链接的数据库
当我们在使用drop database testdb命令删除数据库时,会提示该数据库正在被使用,这样我们就无法删除,此时我们可以通过如下语句断开该数据库的所有链接: SELECT pg_termina ...
- 20165219 学习基础与C语言基础调查
学习基础与C语言基础调查 你有什么技能比大多数人要好? 因为不知道其他人的具体情况,我只能说,我比较擅长钢琴,素描,国画,这也是小时候掌握的比较好的技能. 针对这个技能的获取有什么成功的经验 小时候学 ...
- 3月份GitHub上最热门的Java开源项目
今天,我们来盘点3月份GitHub上最热门的Java项目的时候了,如果你每月都有关注猿妹发布的排行榜,那么本月的Java项目对你来说一定不陌生,这些都是曾经多次出现在榜单中的项目: 1 advance ...
- 【bzoj3601】一个人的数论 莫比乌斯反演+莫比乌斯函数性质+高斯消元
Description Sol 这题好难啊QAQ 反正不看题解我对自然数幂求和那里是一点思路都没有qwq 先推出一个可做一点的式子: \(f(n)=\sum_{k=1}^{n}[(n,k)=1]k^d ...
- Docker Community Edition 镜像使用帮助
1.什么是Docker 容器技术 在计算机的世界中,容器拥有一段漫长且传奇的历史.容器与管理程序虚拟化 (hypervisor virtualization,HV)有所不同,管理程序虚拟化通过中间层将 ...
- Maven国内源设置阿里云地址
Maven国内源设置 目前国外的maven源访问非常慢,作为一个Java开发者,是一件很痛苦的事,而国内的maven源,oschina已经关闭,目前最好的方式,就是使用阿里云的镜像: <mirr ...