codeforces 703D Mishka and Interesting sum 偶数亦或 离线+前缀树状数组
题目大意:给出n个数字,m次区间询问,每一次区间询问都是询问 l 到 r 之间出现次数为偶数的数 的亦或和。
思路:偶数个相同数字亦或得到0,奇数个亦或得到本身,那么如果把一段区间暴力亦或,得到的其实就是出现次数为奇数的数字的亦或和,所以我们希望这段区间内的所有数字出现次数都+1,使奇偶性互换。
我们先处理出前缀的亦或和,这样可以得到次数为奇数的亦或和。
接下来的问题就是要改变一段区间的奇偶性了,也就是说,这个问题其实就转化成了如何求一段区间出现的所有数字(无重复)。
这里我学到的是用树状数组离线处理的方式。核心代码如下。
for(int i=;i<=m;i++){
while(p<=ask[i].r)
{
if(pos[a[p]]==)//对于每一个第一次出现的数字,加入树状数组,并且记录。
{
pos[a[p]]=p;
update(p,a[p]);
}else
{
update(pos[a[p]],a[p]);//如果曾经出现过,则将之前的位置清空,更新树状数组和记录。
update(p,a[p]);
pos[a[p]]=p;
}
p++;
}
ask[i].ans=pre[ask[i].r]^pre[ask[i].l-]^getxor(ask[i].r)^getxor(ask[i].l-);
}
如此操作后,比如我们询问的是1- R 的区间,此时肯定能得到我要的东西,但是如果我们询问的是1- r 这个区间的话(r<R),这个信息可能就不对了!!但是精彩的地方来了,由于我们事先对询问的区间排过序,也就是说,如果是纯粹的询问1-r区间,这个操作肯定在询问1-R之前,所以不会有影响,而如果我们计算的是r-R这个区间,此时1-r这个东西是出现在 减数 的位置的,也就是说,如果有一个数字在1-r和r-R中间都出现过,则此时1-r的树状数组为0,而1-R的树状数组为1!!
所以根据这个思路把他转化成亦或的求法就可以了。
接下来上代码。
#include<cstdio>
#include<cstring>
#include<stdlib.h>
#include<algorithm>
#include<iostream>
#include<map>
#define CLR(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long ll;
const int inf=0x3f3f3f3f;
const int maxn=;
ll pre[maxn],tree[maxn<<],a[maxn];
int n,m;
struct node{
int l,r,id;
ll ans;
}ask[maxn];
bool cmp(const node a,const node b)
{
return a.r<b.r;
}
bool cmpid(const node a,const node b)
{
return a.id<b.id;
}
inline int lowbit(int k){
return (-k)&k;
}
inline void update(int x,ll val){
while(x<=n){
tree[x]^=val;
x+=lowbit(x);
}
}
inline ll getxor(int x){
ll ans=;
while(x>){
ans^=tree[x];
x-=lowbit(x);
}
return ans;
}
map<ll,int >pos;
int main(){
cin>>n;
scanf("%lld",&a[]);
pre[]=a[];
for(int i=;i<=n;i++)
{
scanf("%lld",&a[i]);
pre[i]=pre[i-]^a[i];
}
cin>>m;
for(int i=;i<=m;i++)
{
scanf("%d%d",&ask[i].l,&ask[i].r);
ask[i].id=i;
}
sort(ask+,ask++m,cmp);
int p=;
for(int i=;i<=m;i++){
while(p<=ask[i].r)
{
if(pos[a[p]]==)
{
pos[a[p]]=p;
update(p,a[p]);
}else
{
update(pos[a[p]],a[p]);
update(p,a[p]);
pos[a[p]]=p;
}
p++;
}
ask[i].ans=pre[ask[i].r]^pre[ask[i].l-]^getxor(ask[i].r)^getxor(ask[i].l-);
}
sort(ask+,ask++m,cmpid);
for(int i=;i<=m;i++)
{
printf("%lld\n",ask[i].ans);
}
}
3.5 seconds
256 megabytes
standard input
standard output
Little Mishka enjoys programming. Since her birthday has just passed, her friends decided to present her with array of non-negative integers a1, a2, ..., an of n elements!
Mishka loved the array and she instantly decided to determine its beauty value, but she is too little and can't process large arrays. Right because of that she invited you to visit her and asked you to process m queries.
Each query is processed in the following way:
- Two integers l and r (1 ≤ l ≤ r ≤ n) are specified — bounds of query segment.
- Integers, presented in array segment [l, r] (in sequence of integers al, al + 1, ..., ar) even number of times, are written down.
- XOR-sum of written down integers is calculated, and this value is the answer for a query. Formally, if integers written down in point 2 are x1, x2, ..., xk, then Mishka wants to know the value
, where
— operator of exclusive bitwise OR.
Since only the little bears know the definition of array beauty, all you are to do is to answer each of queries presented.
The first line of the input contains single integer n (1 ≤ n ≤ 1 000 000) — the number of elements in the array.
The second line of the input contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109) — array elements.
The third line of the input contains single integer m (1 ≤ m ≤ 1 000 000) — the number of queries.
Each of the next m lines describes corresponding query by a pair of integers l and r (1 ≤ l ≤ r ≤ n) — the bounds of query segment.
Print m non-negative integers — the answers for the queries in the order they appear in the input.
3
3 7 8
1
1 3
0
7
1 2 1 3 3 2 3
5
4 7
4 5
1 3
1 7
1 5
0
3
1
3
2
In the second sample:
There is no integers in the segment of the first query, presented even number of times in the segment — the answer is 0.
In the second query there is only integer 3 is presented even number of times — the answer is 3.
In the third query only integer 1 is written down — the answer is 1.
In the fourth query all array elements are considered. Only 1 and 2 are presented there even number of times. The answer is
.
In the fifth query 1 and 3 are written down. The answer is
.
codeforces 703D Mishka and Interesting sum 偶数亦或 离线+前缀树状数组的更多相关文章
- Codeforces 703D Mishka and Interesting sum 离线+树状数组
链接 Codeforces 703D Mishka and Interesting sum 题意 求区间内数字出现次数为偶数的数的异或和 思路 区间内直接异或的话得到的是出现次数为奇数的异或和,要得到 ...
- Codeforces 703D Mishka and Interesting sum(离线 + 树状数组)
题目链接 Mishka and Interesting sum 题意 给定一个数列和$q$个询问,每次询问区间$[l, r]$中出现次数为偶数的所有数的异或和. 设区间$[l, r]$的异或和为$ ...
- Codeforces 703D Mishka and Interesting sum(树状数组+扫描线)
[题目链接] http://codeforces.com/contest/703/problem/D [题目大意] 给出一个数列以及m个询问,每个询问要求求出[L,R]区间内出现次数为偶数的数的异或和 ...
- CodeForces 703D Mishka and Interesting sum
异或运算性质,离线操作,区间求异或和. 直接求区间出现偶数次数的异或和并不好算,需要计算反面. 首先,很容易求解区间异或和,记为$P$. 例如下面这个序列,$P = A[1]xorA[2]xorA[3 ...
- CF #365 703D. Mishka and Interesting sum
题目描述 D. Mishka and Interesting sum的意思就是给出一个数组,以及若干询问,每次询问某个区间[L, R]之间所有出现过偶数次的数字的异或和. 这个东西乍看很像是经典问题, ...
- Codeforces Round #510 (Div. 2) D. Petya and Array(离散化+反向树状数组)
http://codeforces.com/contest/1042/problem/D 题意 给一个数组n个元素,求有多少个连续的子序列的和<t (1<=n<=200000,abs ...
- Codeforces Round #198 (Div. 1) D. Iahub and Xors 二维树状数组*
D. Iahub and Xors Iahub does not like background stories, so he'll tell you exactly what this prob ...
- Playrix Codescapes Cup (Codeforces Round #413, rated, Div. 1 + Div. 2) C. Fountains 【树状数组维护区间最大值】
题目传送门:http://codeforces.com/contest/799/problem/C C. Fountains time limit per test 2 seconds memory ...
- Codeforces Round #590 (Div. 3)【D题:26棵树状数组维护字符出现次数】
A题 题意:给你 n 个数 , 你需要改变这些数使得这 n 个数的值相等 , 并且要求改变后所有数的和需大于等于原来的所有数字的和 , 然后输出满足题意且改变后最小的数值. AC代码: #includ ...
随机推荐
- SpringBoot25 gradle安装、利用gradle创建SrpingBoot项目
1 gradle安装 技巧01:gradle依赖JDK或者JRE,而且版本至少时1.7 1.1 下载安装包 到gradle官网下载安装包[PS: 也可以利用命令的方式安装,本案例是利用安装包的方式] ...
- Nginx+Tomcat集群+session共享
Nginx+Tomcat集群+session共享 1)安装Nginx 2)配置多个Tomcat,在server.xml中修改端口(端口不出现冲突即可) 3)在nginx.conf文件中配置负载均衡池, ...
- Hadoop完全分布式环境搭建(三)——基于Ubuntu16.04安装和配置Java环境
[系统环境] 1.宿主机OS:Win10 64位 2.虚拟机软件:VMware WorkStation 12 3.虚拟机OS:Ubuntu16.04 4.三台虚拟机 5.JDK文件:jdk-8u201 ...
- 利用GeoServer发布web地图服务
参考: http://www.cnblogs.com/beniao/archive/2011/01/11/1931028.html http://www.cnblogs.com/LBSer/p/445 ...
- eclipse——Maven插件创建java工程
目录结构如下 注意默认JDK为1.5 更改默认JDK 方式一 右键工程 选中JRE1.5 Remove 双击JRE System Library 点击Finish 更改完成 方式二 配置maven ...
- python核心编程第3章课后题答案(第二版55页)
3-4Statements Ues ; 3-5Statements Use\(unless part of a comma-separated sequence in which case \ is ...
- Java简单实现AOP,Java通用异常拦截,Java与Lamada
直接看代码不废话.不懂Lamada直接百度... package test; /** * QQ:1448376744 * @author 花间岛 * */ //控制器 public class Con ...
- C#多线程编程实战1.2暂停线程(休眠)
using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Threa ...
- 在有主分支和个人分支情况下的TFS使用方法
从事.NET开发的资深童鞋一定都知道VS有自带的代码管理工具TFS(Team Foundation Server ),但是开发萌新可能就不太了解了,下面我就介绍一下这个工具以及它的一些常用操作. TF ...
- C# ADO.NET+反射读取数据库并转换为List
public List<T> QueryByADO<T>(string connStr, string sql) where T : class, new() { using ...